Fits cumulative link models: proportional odds, probit, complementary log-log, and cauchit.
svyolr(formula, design, ...)
# S3 method for survey.design2
svyolr(formula, design, start, subset=NULL,...,
na.action = na.omit,method = c("logistic", "probit", "cloglog", "cauchit"))
# S3 method for svyrep.design
svyolr(formula,design,subset=NULL,...,return.replicates=FALSE,
multicore=getOption("survey.multicore"))
# S3 method for svyolr
predict(object, newdata, type = c("class", "probs"), ...)
An object of class svyolr
Formula: the response must be a factor with at least three levels
survey design object
subset of the design to use; NULL
for all of it
dots
Optional starting values for optimization
handling of missing values
Use multicore
package to distribute computation of replicates across multiple
processors?
Link function
return the individual replicate-weight estimates
object of class svyolr
new data for predictions
return vector of most likely class or matrix of probabilities
The code is based closely on polr() from the MASS package of Venables and Ripley.
svyglm
, regTermTest
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1<-update(dclus1, mealcat=cut(meals,c(0,25,50,75,100)))
m<-svyolr(mealcat~avg.ed+mobility+stype, design=dclus1)
m
## Use regTermTest for testing multiple parameters
regTermTest(m, ~avg.ed+stype, method="LRT")
## predictions
summary(predict(m, newdata=apiclus2))
summary(predict(m, newdata=apiclus2, type="probs"))
Run the code above in your browser using DataLab