data(api)
  ## population
  mean(apipop$api00)
  quantile(apipop$api00,c(.25,.5,.75))
  var(apipop$api00)
  sum(apipop$enroll)
  sum(apipop$api.stu)/sum(apipop$enroll)
  ## one-stage cluster sample
  dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
  summary(dclus1)
  svymean(~api00, dclus1)
  svyquantile(~api00, dclus1, c(.25,.5,.75))
  svyvar(~api00, dclus1)
  svytotal(~enroll, dclus1)
  svyratio(~api.stu, ~enroll, dclus1)
  #stratified sample
  dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
  summary(dstrat)
  svymean(~api00, dstrat)
  svyquantile(~api00, dstrat, c(.25,.5,.75))
  svyvar(~api00, dstrat)
  svytotal(~enroll, dstrat)
  svyratio(~api.stu, ~enroll, dstrat)
  # replicate weights - jackknife (this is slow)
  jkstrat<-as.svrepdesign(dstrat)
  summary(jkstrat)
  svrepmean(~api00, jkstrat)
  svrepquantile(~api00, jkstrat, c(.25,.5,.75))
  svreptotal(~enroll, jkstrat)
  svrepratio(~api.stu, ~enroll, jkstrat)
  # BRR method
  data(scd)
  repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
              c(0,1,0,1,1,0))
  scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)
  svrepmean(~arrests+alive, design=scdrep)Run the code above in your browser using DataLab