## S3 method for class 'survey.design':
svymean(x, design, na.rm=FALSE,deff=FALSE,...)
## S3 method for class 'svyrep.design':
svymean(x, design, na.rm=FALSE, rho=NULL,
return.replicates=FALSE, deff=FALSE,...)
## S3 method for class 'survey.design':
svyvar(x, design, na.rm=FALSE,...)
## S3 method for class 'svyrep.design':
svyvar(x, design, na.rm=FALSE, rho=NULL,
return.replicates=FALSE,...)
## S3 method for class 'survey.design':
svytotal(x, design, na.rm=FALSE,deff=FALSE,...)
## S3 method for class 'svyrep.design':
svytotal(x, design, na.rm=FALSE, rho=NULL,
return.replicates=FALSE, deff=FALSE,...)
## S3 method for class 'svystat':
coef(object,...)
## S3 method for class 'svrepstat':
coef(object,...)
## S3 method for class 'svystat':
vcov(object,...)
## S3 method for class 'svrepstat':
vcov(object,...)
cv(object,...)
deff(object, quietly=FALSE,...)
survey.design
or svyrep.design
objectcv
methods,not currently used"svystat"
or "svrepstat"
,
which are vectors with a "var"
attribute giving the variance
and a "statistic"
attribute giving the name of the statistic.Factor variables are converted to sets of indicator variables for each
category in computing means and totals. Combining this with the
interaction
function, allows crosstabulations. See
ftable.svystat
for formatting the output.
With na.rm=TRUE
, all cases with missing data are removed. With
na.rm=FALSE
cases with missing data are not removed and so will
produce missing results. When using replicate weights and
na.rm=FALSE
it may be useful to set
options(na.action="na.pass")
, otherwise all replicates with any
missing results will be discarded.
The svytotal
and svreptotal
functions estimate a
population total. Use predict
on svyratio
,
svrepratio
, svyglm
, svrepglm
to get ratio or regression estimates of totals.
The design effect compares the variance of a mean or total to the
variance from a study of the same size using simple random sampling
without replacement. Note that the design effect will be incorrect if
the weights have been rescaled so that they are not reciprocals of
sampling probabilities. To obtain an estimate of the design effect
comparing to simple random sampling with replacement, which does not
have this requirement, use deff="replace"
. This with-replacement
design effect is the square of Kish's "deft".
The cv
function computes the coefficient of variation of a
statistic such as ratio, mean or total. The default method is for any
object with methods for SE
and coef
.
svydesign
, as.svrepdesign
,
svrepdesign
, svyquantile
, ftable.svystat
data(api)
## population
mean(apipop$api00)
quantile(apipop$api00,c(.25,.5,.75))
var(apipop$api00)
sum(apipop$enroll)
sum(apipop$api.stu)/sum(apipop$enroll)
## one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
summary(dclus1)
svymean(~api00, dclus1, deff=TRUE)
svymean(~factor(stype),dclus1)
svymean(~interaction(stype, comp.imp), dclus1)
svyquantile(~api00, dclus1, c(.25,.5,.75))
svyvar(~api00, dclus1)
svytotal(~enroll, dclus1, deff=TRUE)
svyratio(~api.stu, ~enroll, dclus1)
#stratified sample
dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
summary(dstrat)
svymean(~api00, dstrat)
svyquantile(~api00, dstrat, c(.25,.5,.75))
svyvar(~api00, dstrat)
svytotal(~enroll, dstrat)
svyratio(~api.stu, ~enroll, dstrat)
# replicate weights - jackknife (this is slow)
jkstrat<-as.svrepdesign(dstrat)
summary(jkstrat)
svymean(~api00, jkstrat)
svymean(~factor(stype),jkstrat)
svyvar(~api00,jkstrat)
svyquantile(~api00, jkstrat, c(.25,.5,.75))
svytotal(~enroll, jkstrat)
svyratio(~api.stu, ~enroll, jkstrat)
# coefficients of variation
cv(svytotal(~enroll,dstrat))
cv(svyratio(~api.stu, ~enroll, jkstrat))
# extracting statistic and variance
coef(svytotal(~enroll,dstrat))
vcov(svymean(~api00+api99,jkstrat))
# Design effect
svymean(~api00, dstrat, deff=TRUE)
svymean(~api00, dstrat, deff="replace")
svymean(~api00, jkstrat, deff=TRUE)
svymean(~api00, jkstrat, deff="replace")
(a<-svytotal(~enroll, dclus1, deff=TRUE))
deff(a)
# BRR method
data(scd)
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)
svymean(~arrests+alive, design=scdrep)
Run the code above in your browser using DataLab