Last chance! 50% off unlimited learning
Sale ends in
sym.interval.pca(sym.data, method = c("classic", "tops", "centers"))
Sym.Prin.Correlations: This is the interval correlations between the original interval variables and the interval principal components, it can be use to plot the symbolic circle of correlations.
Cazes P., Chouakria A., Diday E. et Schektman Y. (1997). Extension de l'analyse en composantes principales a des donnees de type intervalle, Rev. Statistique Appliquee, Vol. XLV Num. 3 pag. 5-24, France.
Chouakria A. (1998) Extension des methodes d'analysis factorialle a des donnees de type intervalle, Ph.D. Thesis, Paris IX Dauphine University.
Makosso-Kallyth S. and Diday E. (2012). Adaptation of interval PCA to symbolic histogram variables, Advances in Data Analysis and Classification July, Volume 6, Issue 2, pp 147-159.
Rodriguez, O. (2000). Classification et Modeles Lineaires en Analyse des Donnees Symboliques. Ph.D. Thesis, Paris IX-Dauphine University.
sym.histogram.pca
data(oils)
res<-sym.interval.pca(oils,'centers')
sym.scatterplot(sym.var(res$Sym.Components,1),sym.var(res$Sym.Components,2),
labels=TRUE,col='red',main='PCA Oils Data')
sym.scatterplot3d(sym.var(res$Sym.Components,1),sym.var(res$Sym.Components,2),
sym.var(res$Sym.Components,3),color='blue',main='PCA Oils Data')
sym.scatterplot.ggplot(sym.var(res$Sym.Components,1),sym.var(res$Sym.Components,2),
labels=TRUE)
sym.circle.plot(res$Sym.Prin.Correlations)
res<-sym.interval.pca(oils,'classic')
plot.PCA(res,choix="ind")
plot.PCA(res,choix="var")
data(lynne2)
res<-sym.interval.pca(lynne2,'centers')
sym.scatterplot(sym.var(res$Sym.Components,1),sym.var(res$Sym.Components,2),
labels=TRUE,col='red',main='PCA Lynne Data')
sym.scatterplot3d(sym.var(res$Sym.Components,1),sym.var(res$Sym.Components,2),
sym.var(res$Sym.Components,3),color='blue', main='PCA Lynne Data')
sym.scatterplot.ggplot(sym.var(res$Sym.Components,1),sym.var(res$Sym.Components,2),
labels=TRUE)
sym.circle.plot(res$Sym.Prin.Correlations)
data(StudentsGrades)
st<-StudentsGrades
s.pca<-sym.interval.pca(st)
plot.PCA(s.pca,choix="ind")
plot.PCA(s.pca,choix="var")
Run the code above in your browser using DataLab