tablefreq(iris)
tablefreq(iris, c("Sepal.Length","Species"))
a <- tablefreq(iris,freq="Sepal.Length")
tablefreq(a, freq="Sepal.Width")
library(dplyr)
iris %>% tablefreq("Species")
tfq <- tablefreq(iris[,c(1:2)])
chunk1 <- iris[1:10,c(1:2)]
chunk2 <- iris[c(11:20),]
chunk3 <- iris[-c(1:20),]
a <- tablefreq(chunk1)
a <- update(a,chunk2)
a <- update(a,chunk3)
a
## Not run: ------------------------------------
# 
# ## External databases
# library(dplyr)
# if(require(RSQLite)){
#   hflights_sqlite <- tbl(hflights_sqlite(), "hflights")
#   hflights_sqlite
#   tbl_vars(hflights_sqlite)
#   tablefreq(hflights_sqlite,vars=c("Year","Month"),freq="DayofMonth")
# }
# 
# ##
# ## Graphs
# ##
# if(require(ggplot2) && require(hflights)){
#   library(dplyr)
# 
#   ## One variable
#   ## Bar plot
#   tt <- as.data.frame(tablefreq(hflights[,"ArrDelay"]))
#   p <- ggplot() + geom_bar(aes(x=x, y=freq), data=tt, stat="identity")
#   print(p)
# 
#   ## Histogram
#   p <- ggplot() + geom_histogram(aes(x=x, weight= freq), data = tt)
#   print(p)
# 
#   ## Density
#   tt <- tt[complete.cases(tt),] ## remove missing values
#   tt$w <- tt$freq / sum(tt$freq) ## weights must sum 1
#   p <- ggplot() + geom_density(aes(x=x, weight= w), data = tt)
#   print(p)
# 
#   ##
#   ## Two distributions
#   ##
#   ## A numeric and a factor variable
#   td <- tablefreq(hflights[,c("TaxiIn","Origin")])
#   td <- td[complete.cases(td),]
# 
#   ## Bar plot
#   p <- ggplot() + geom_bar(aes(x=TaxiIn, weight= freq, colour = Origin),
#                            data = td, position ="dodge")
#   print(p)
# 
#   ## Density
#   ## compute the relative frequencies for each group
#   td <- td %>% group_by(Origin) %>%
#                mutate( ngroup= sum(freq), wgroup= freq/ngroup)
#   p <- ggplot() + geom_density(aes(x=TaxiIn, weight=wgroup, colour = Origin),
#                                data = td)
#   print(p)
# 
#   ## For each group, plot its values
#   p <- ggplot() + geom_point(aes(x=Origin, y=TaxiIn, size=freq),
#                              data = td, alpha= 0.6)
#   print(p)
# 
#   ## Two numeric variables
#   tc <- tablefreq(hflights[,c("TaxiIn","TaxiOut")])
#   tc <- tc[complete.cases(tc),]
#   p <- ggplot() + geom_point(aes(x=TaxiIn, y=TaxiOut, size=freq),
#                              data = tc, color = "red", alpha=0.5)
#   print(p)
# 
#   ## Two factors
#   tf <- tablefreq(hflights[,c("UniqueCarrier","Origin")])
#   tf <- tf[complete.cases(tf),]
# 
#   ## Bar plot
#   p <- ggplot() + geom_bar(aes(x=Origin, fill=UniqueCarrier, weight= freq),
#                            data = tf)
#   print(p)
# }
## ---------------------------------------------
Run the code above in your browser using DataLab