Learn R Programming

TAM (version 0.04-43)

tam.se: Standard Error Estimation

Description

Standard error computation for objects of the classes tam and tam.mml. Still to come for objects of class tam.jml.

Usage

tam.se(tamobj, ...)
tam.mml.se(tamobj, numdiff.parm = 0.001)

Arguments

tamobj
An object generated by tam.mml
numdiff.parm
Step width parameter for numerical differentiation
...
Further arguments to be passed

Value

  • A list with following entries:
  • xsiData frame with $\xi$ parameters (est) an their corresponding standard errors (se)
  • betaData frame with $\beta$ regression parameters and their standard error estimates

Details

Covariances between parameters estimates are ignored in this standard error calculation. The standard error is obtained by numerical differentiation.

Examples

Run this code
data(sim.rasch)
# estimate Rasch model
mod1 <- tam.mml(resp=sim.rasch) 
# standard error estimation
se1 <- tam.se( mod1 ) 

##   > print(se1$xsi, digits=3 )
##      xsi.index xsi.label     est     se
##   1          1        I1 -1.9590 0.0654
##   2          2        I2 -1.8570 0.0639
##   3          3        I3 -1.7444 0.0623
##   4          4        I4 -1.6407 0.0610

Run the code above in your browser using DataLab