Learn R Programming

targets (version 0.12.0)

tar_resources: Target resources

Description

Create a resources argument for tar_target() or tar_option_set().

Usage

tar_resources(
  aws = NULL,
  clustermq = NULL,
  feather = NULL,
  fst = NULL,
  future = NULL,
  gcp = NULL,
  parquet = NULL,
  qs = NULL,
  url = NULL
)

Arguments

aws

Output of function tar_resources_aws(). Amazon Web Services (AWS) S3 storage settings for tar_target(..., repository = "aws"). See the cloud storage section of https://books.ropensci.org/targets/data.html for details for instructions.

clustermq

Output of function tar_resources_clustermq(). Optional clustermq settings for tar_make_clustermq(), including the log_worker and template arguments of clustermq::workers().

feather

Output of function tar_resources_feather(). Non-default arguments to arrow::read_feather() and arrow::write_feather() for arrow/feather-based storage formats. Applies to all formats ending with the "_feather" suffix. For details on formats, see the format argument of tar_target().

fst

Output of function tar_resources_fst(). Non-default arguments to fst::read_fst() and fst::write_fst() for fst-based storage formats. Applies to all formats ending with "fst" in the name. For details on formats, see the format argument of tar_target().

future

Output of function tar_resources_future(). Optional future settings for tar_make_future(), including the resources argument of future::future(), which can include values to insert in template placeholders in future.batchtools template files. This is how to supply the resources argument of future::future() for targets. Resources supplied through future::plan() and future::tweak() are completely ignored.

gcp

Output of function tar_resources_gcp(). Google Cloud Storage bucket settings for tar_target(..., repository = "gcp"). See the cloud storage section of https://books.ropensci.org/targets/data.html for details for instructions.

parquet

Output of function tar_resources_parquet(). Non-default arguments to arrow::read_parquet() and arrow::write_parquet() for arrow/parquet-based storage formats. Applies to all formats ending with the "_parquet" suffix. For details on formats, see the format argument of tar_target().

qs

Output of function tar_resources_qs(). Non-default arguments to qs::qread() and qs::qsave() for qs-based storage formats. Applies to all formats ending with the "_qs" suffix. For details on formats, see the format argument of tar_target().

url

Output of function tar_resources_url(). Non-default settings for storage formats ending with the "_url" suffix. These settings include the curl handle for extra control over HTTP requests. For details on formats, see the format argument of tar_target().

Value

A list of objects of class "tar_resources" with non-default settings of various optional backends for data storage and high-performance computing.

Resources

Functions tar_target() and tar_option_set() each takes an optional resources argument to supply non-default settings of various optional backends for data storage and high-performance computing. The tar_resources() function is a helper to supply those settings in the correct manner. Resources are all-or-nothing: if you specify any resources with tar_target(), all the resources from tar_option_get("resources") are dropped for that target. In other words, if you write tar_option_set(resources = resources_1) and then tar_target(x, my_command(), resources = resources_2), then everything in resources_1 is discarded for target x.

See Also

Other resources: tar_resources_aws(), tar_resources_clustermq(), tar_resources_feather(), tar_resources_fst(), tar_resources_future(), tar_resources_gcp(), tar_resources_parquet(), tar_resources_qs(), tar_resources_url()

Examples

Run this code
# NOT RUN {
# Somewhere in you target script file (usually _targets.R):
tar_target(
  name,
  command(),
  format = "qs",
  resources = tar_resources(
    qs = tar_resources_qs(preset = "fast"),
    future = tar_resources_future(resources = list(n_cores = 1))
  )
)
# }

Run the code above in your browser using DataLab