# NOT RUN {
data("dflatExample")
data("gse32472Example")
# }
# NOT RUN {
# This runs a simple TEMPO analysis on the example data set with default settings
# (with the exception of nCores, which will instead be automatically set to a suitable
# value) and saves the output in a two temporary files.
# Note that running this example may take several minutes.
results = tempo.run(phen=gse32472Example$bpd,
genesets=dflatExample,
X=gse32472Example$data,
Y=gse32472Example$age,
output=tempfile(tmpdir = tempdir()),
nCores=-1)
# If phen is used, the first item in the list is assumed to the control phenotype
# and all other phenotypes test. Specifiy ctrl and test exactly for more control.
# Note that running this example may take several minutes.
results = tempo.run(ctrl=gse32472Example$ctrl,
test=gse32472Example$test,
genesets=dflatExample,
X=gse32472Example$data,
Y=gse32472Example$age,
nCores=-1)
# If training models on a held out set of data is desired, train can be specified seperately
# Note that running this example may take several minutes.
results2 = tempo.run(train=gse32472Example$ctrl[1:10],
ctrl=gse32472Example$ctrl[11:20],
test=gse32472Example$test,
genesets=dflatExample,
X=gse32472Example$data,
Y=gse32472Example$age,
nCores=-1)
# }
# NOT RUN {
# Reporting thresholds, number of permutations, and number of CPU cores used can all be changed.
# This command is suitable for demonstration purposes, but significance values will not be
# meaningful.
results3 = tempo.run(phen=gse32472Example$bpd,
genesets=dflatExample,X=gse32472Example$data,
Y=gse32472Example$age,output=tempfile(tmpdir = tempdir()),
numPerms=2,nCores=2,pCutoff=1,fdrCutoff=2,pMseCutoff = 1)
# }
Run the code above in your browser using DataLab