#be warned, the examples of test_counts are time-consuming
## Not run:
# adpcr1 <- sim_adpcr(m = 10, n = 765, times = 1000, pos_sums = FALSE, n_panels = 3)
# adpcr2 <- sim_adpcr(m = 60, n = 550, times = 1000, pos_sums = FALSE, n_panels = 3)
# adpcr2 <- rename_dpcr(adpcr2, exper = "Experiment2")
# adpcr3 <- sim_adpcr(m = 10, n = 600, times = 1000, pos_sums = FALSE, n_panels = 3)
# adpcr3 <- rename_dpcr(adpcr3, exper = "Experiment3")
#
# #compare experiments using binomial regression
# two_groups_bin <- test_counts(bind_dpcr(adpcr1, adpcr2), model = "binomial")
# summary(two_groups_bin)
# plot(two_groups_bin)
# #plot aggregated results
# plot(two_groups_bin, aggregate = TRUE)
# #get coefficients
# coef(two_groups_bin)
#
# #this time use Poisson regression
# two_groups_pois <- test_counts(bind_dpcr(adpcr1, adpcr2), model = "poisson")
# summary(two_groups_pois)
# plot(two_groups_pois)
#
# #see how test behaves when results aren't significantly different
# one_group <- test_counts(bind_dpcr(adpcr1, adpcr3))
# summary(one_group)
# plot(one_group)
# ## End(Not run)
Run the code above in your browser using DataLab