Learn R Programming

⚠️There's a newer version (R2000.6-1) of this package.Take me there.

dse (version 2009.12-1)

Dynamic Systems Estimation (time series package)

Description

Package dse provides tools for multivariate, linear, time-invariant, time series models. It includes ARMA and state-space representations, and methods for converting between them. It also includes simulation methods and several estimation functions. The package has functions for looking at model roots, stability, and forecasts at different horizons. The ARMA model representaion is general, so that VAR, VARX, ARIMA, ARMAX, ARIMAX can all be considered to be special cases. Kalman filter and smoother estimates can be obtained from the state space model, and state-space model reduction techniques are implemented. An introduction and User's Guide is available in a vignette.

Copy Link

Version

Install

install.packages('dse')

Monthly Downloads

142

Version

2009.12-1

License

GPL-2 | file LICENSE

Maintainer

Paul Gilbert

Last Published

January 20th, 2011

Functions in dse (2009.12-1)

estBlackBox4

Estimate a TSmodel
Polynomials

Polynomial Utilities
Portmanteau

Calculate Portmanteau statistic
estSSMittnik

Estimate a State Space Model
informationTestsCalculations

Calculate selection criteria
DSEutilities

DSE Utilities
McMillanDegree

Calculate McMillan Degree
MittnikReducedModels

Reduced Models via Mittnik SVD balancing
egJofF.1dec93.data

Eleven Time Series used in Gilbert (1995)
TSdata

Construct TSdata time series object
estSSfromVARX

Estimate a state space TSmodel using VAR estimation
estVARXls

Estimate a VAR TSmodel
eg1.DSE.data

Four Time Series used in Gilbert (1993)
estimatorsHorizonForecastsWRTdata

Estimate models and forecast at given horizons
combine.forecastCov

Combine 2 Forecast Cov Objects
estBlackBox2

Estimate a TSmodel
minimumStartupLag

Starting Periods Required
forecastCov

Forecast covariance for different models
estVARXar

Estimate a VAR TSmodel
TSestModel

Estimated Time Series Model
00.dse.Intro

Dynamic Systems Estimation - Multivariate Time Series Package
fixF

Set SS Model F Matrix to Constants
forecastCovWRTtrue

Compare Forecasts to True Model Output
estimateModels

Estimate Models
Riccati

Riccati Equation
coef.TSmodel

Extract or set Model Parameters
forecastCovEstimatorsWRTdata

Calculate Forecast Cov of Estimators WRT Data
horizonForecasts

Calculate forecasts at specified horizons
TSdata.forecastCov

TS Extractor Specific Methods
sumSqerror

Calculate sum of squared prediction errors
estBlackBox3

Estimate a TSmodel
simulate

Simulate a TSmodel
informationTests

Tabulates selection criteria
roots.estimatedModels

Roots Specific Methods
makeTSnoise

Generate a random time series
dse-package

Dynamic Systems Estimation - Multivariate Time Series Package
testEqual.forecast

Specific Methods for Testing Equality
acf

Calculate the acf for an object
forecastCovCompiled

Forecast covariance for different models - internal
DSEversion

Print Version Information
nseries.featherForecasts

Number of Series
checkBalance

Check Balance of a TSmodel
state

Extract State
seriesNamesInput

TSdata Series Names
l.ARMA

Evaluate an ARMA TSmodel
inputData

TSdata Series
roots

Calculate Model Roots
bestTSestModel

Select Best Model
setTSmodelParameters

Set TSmodel Parameter Information
forecastCovEstimatorsWRTtrue

Compare Forecasts Cov Relative to True Model Output
residuals.TSestModel

Calculate the residuals for an object
estBlackBox1

Estimate a TSmodel
tfplot.forecast

Specific Methods for tfplot
gmap

Basis Transformation of a Model.
TSmodel

Time Series Models
seriesNamesInput.forecast

TS Input and Output Specific Methods
estMaxLik

Maximum Likelihood Estimation
combine.TSdata

Combine series from two TSdata objects.
setArrays

Set TSmodel Array Information
observability

Calculate Model Observability Matrix
MittnikReduction

Balance and Reduce a Model
SS

State Space Models
estWtVariables

Weighted Estimation
l

Evaluate a TSmodel
TSdata.object

time series data object
combine

Combine two objects.
phasePlots

Calculate Phase Plots
toSSinnov

Convert to State Space Innovations Model
horizonForecastsCompiled

Calculate forecasts at specified horizons
ARMA

ARMA Model Constructor
featherForecasts

Multiple Horizon-Step Ahead Forecasts
print.TSestModel

Display TSmodel Arrays
is.forecastCovEstimatorsWRTdata.subsets

Check Inheritance
tframed.TSdata

Specific Methods for tframed Data
forecast

Forecast Multiple Steps Ahead
estBlackBox

Estimate a TSmodel
minForecastCov

Minimum Forecast Cov Models
percentChange.TSdata

Calculate percent change
testEqual.ARMA

Specific Methods for Testing Equality
nseriesInput

Number of Series in in Input or Output
excludeForecastCov

Filter Object to Remove Forecasts
toSSOform

Convert to Oform
tfplot.TSdata

Tfplot Specific Methods
totalForecastCov

Sum covariance of forecasts across all series
periods.TSdata

Specific Methods for tframed Data
permute

Permute
toSSChol

Convert to Non-Innovation State Space Model
scale.TSdata

Scale Methods for TS objects
reachability

Calculate Model Reachability Matrix
residualStats

Calculate Residuals Statistics and Likelihood
markovParms

Markov Parameters
seriesNames.TSdata

Series Names Specific Methods
print.forecastCov

Print Specific Methods
summary.forecastCov

Summary Specific Methods
tfplot.forecastCov

Plots of Forecast Variance
extractforecastCov

Extract Forecast Covariance
toSS

Convert to State Space Model
selectForecastCov

Select Forecast Covariances Meeting Criteria
smoother

Evaluate a smoother with a TSmodel
print.TSdata

Print Specific Methods
DSEflags

Flags to Indicate Use of Compiled Code
stability

Calculate Stability of a TSmodel
outOfSample.forecastCovEstimatorsWRTdata

Calculate Out-of-Sample Forecasts
summary.TSdata

Specific Methods for Summary
checkBalanceMittnik

Check Balance of a TSmodel
checkConsistentDimensions

Check Consistent Dimensions
fixConstants

Fix TSmodel Coefficients (Parameters) to Constants
l.SS

Evaluate a state space TSmodel
nstates

State Dimension of a State Space Model
balanceMittnik

Balance a state space model
addPlotRoots

Add Model Roots to a plot
forecastCovReductionsWRTtrue

Forecast covariance for different models
periodsInput

TSdata Periods
forecasts

Extract Forecasts
plot.roots

Plot Model Roots
stripMine

Select a Data Subset and Model
checkResiduals

Autocorrelations Diagnostics
shockDecomposition

Shock Decomposition
toARMA

Convert to an ARMA Model