Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (6.3) of this package.
Take me there.
pomp (version 0.49-2)
Statistical inference for partially observed Markov processes
Description
Inference methods for partially-observed Markov processes
Copy Link
Link to current version
Version
Version
6.3
6.2
6.1
5.11
5.10
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
4.7
4.6
4.5
4.4
4.3
4.2
4.1
3.6
3.5
3.4
3.3
3.2
3.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.19
1.18.8.2
1.18.8.1
1.18.7.1
1.18.4.1
1.18.1.1
1.18
1.17.3.1
1.17.1.1
1.17
1.16.3.2
1.16.2.4
1.16.2.1
1.16.1.2
1.16
1.15.4.1
1.15.3.2
1.15.2.2
1.15
1.14.2.1
1.14.1.5
1.14.1.1
1.14
1.13.4.2
1.13.3.1
1.13.2.1
1.13
1.12
1.10
1.9
1.8
1.7
1.6
1.4.1.1
1.3.1.1
1.2.1.1
1.1.1.1
0.65-1
0.53-5
0.53-1
0.49-2
0.49-1
0.45-8
0.43-8
0.43-4
0.43-1
0.42-4
0.42-1
0.41-3
0.41-1
0.40-2
0.40-1
0.39-4
0.39-3
0.39-2
0.39-1
0.38-5
0.38-3
0.38-2
0.38-1
0.37-1
0.36-7
0.36-5
0.36-4
0.36-2
0.36-1
0.35-1
0.34-2
0.34-1
0.33-1
0.32-6
0.32-5
0.32-1
0.31-1
0.30-1
0.29-5
0.29-2
0.28-5
0.28-2
0.27-2
0.27-1
0.26-3
0.25-7
0.25-4
0.24-7
0.24-5
0.24-1
0.23-6
0.23-5
0.23-2
0.23-1
0.22-6
0.22-5
0.22-4
0.21-3
0.20-8
0.20-4
0.20-2
0.19-1
0.18-3
0.18-2
0.18-1
0.17-3
0.17-2
Install
install.packages('pomp')
Monthly Downloads
2,109
Version
0.49-2
License
GPL (>= 2)
Maintainer
Aaron King
Last Published
March 27th, 2014
Functions in pomp (0.49-2)
Search all functions
logmeanexp
The log-mean-exp trick
simulate-pomp
Running simulations of a partially-observed Markov process
ou2
Two-dimensional discrete-time Ornstein-Uhlenbeck process
eulermultinom
Euler-multinomial death process
pompExample
Pre-built examples of pomp objects.
rw2
Two-dimensional random-walk process
sir
SIR models.
pmcmc
The PMCMC algorithm
basic.probes
Some probes for partially-observed Markov processes
dmeasure-pomp
Evaluate the probability density of observations given underlying states in a partially-observed Markov process
pomp-fun
Definition and methods of the "pomp.fun" class
spect
Power spectrum computation for partially-observed Markov processes.
pfilter
Particle filter
dprocess-pomp
Evaluate the probability density of state transitions in a Markov process
pomp-methods
Methods of the "pomp" class
probed.pomp-methods
Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp", and "spect.matched.pomp" classes
dacca
Model of cholera transmission for historic Bengal.
abc
The ABC algorithm
pompBuilder
Write, compile, link, and build a pomp object using native codes
B-splines
B-spline bases
LondonYorke
Historical childhood disease incidence data
gompertz
Gompertz model with log-normal observations.
bsmc
Liu and West Bayesian Particle Filter
abc-methods
Methods of the "abc" class
mif
The MIF algorithm
mif-class
The "mif" class
pomp-class
Partially-observed Markov process class
sannbox
Simulated annealing with box constraints.
skeleton-pomp
Evaluate the deterministic skeleton at the given points in state space.
mif-methods
Methods of the "mif" class
nlf
Fit Model to Data Using Nonlinear Forecasting (NLF)
particles-mif
Generate particles from the user-specified distribution.
init.state-pomp
Return a matrix of initial conditions given a vector of parameters and an initial time.
pomp
Partially-observed Markov process object.
sobol
Sobol' low-discrepancy sequence
trajectory
Compute trajectories of the deterministic skeleton.
parmat
Create a matrix of parameters
pomp-package
Partially-observed Markov processes
pfilter-methods
Methods of the "pfilterd.pomp" class
sliceDesign
Design matrices for likelihood slices.
pmcmc-methods
Methods of the "pmcmc" class
prior-pomp
Evaluate or simulate from the prior probability density
traj.match
Trajectory matching
rmeasure-pomp
Simulate the measurement model of a partially-observed Markov process
ricker
Ricker model with Poisson observations.
rprocess-pomp
Simulate the process model of a partially-observed Markov process
plugins
Plug-ins for dynamical models based on stochastic Euler algorithms
verhulst
Simple Verhulst-Pearl (logistic) model.
blowflies
Model for Nicholson's blowflies.
profileDesign
Design matrices for likelihood profile calculations.
probe
Probe a partially-observed Markov process.