Last chance! 50% off unlimited learning
Sale ends in
tmodUtest(l, modules = NULL, qval = 0.05, order.by = "pval", filter = FALSE, mset = "LI", cols = "Title", useR = FALSE)
tmodCERNOtest(l, modules = NULL, qval = 0.05, order.by = "pval", filter = FALSE, mset = "LI", cols = "Title", useR = FALSE)
tmodHGtest(fg, bg, modules = NULL, qval = 0.05, order.by = "pval", filter = FALSE, mset = "LI", cols = "Title")
wilcox.test
function; slow, but with exact p-values for small samplestmodCERNOtest is also a nonparametric test working on gene ranks, but it originates from Fisher's combined probability test. This test weights genes with lower ranks more, the resulting p-values better correspond to the observed effect size. In effect, modules with small effect but many genes get higher p-values than in case of the U-test.
tmodHGtest is simply a hypergeometric test.
In tmod, two module sets can be used, "LI" (from Li et al. 2013), or "DC" (from Chaussabel et al. 2008). Using the parameter "mset", the module set can be selected, or, if mset is "all", both of sets are used.
data(tmod)
fg <- tmod$MODULES2GENES[["LI.M127"]]
bg <- tmod$GENES$ID
result <- tmodHGtest( fg, bg )
## A more sophisticated example
## Gene set enrichment in TB patients compared to
## healthy controls (Egambia data set)
library(limma)
data(Egambia)
design <- cbind(Intercept=rep(1, 30), TB=rep(c(0,1), each= 15))
fit <- eBayes( lmFit(Egambia[,-c(1:3)], design))
tt <- topTable(fit, coef=2, number=Inf, genelist=Egambia[,1:3] )
tmodUtest(tt$GENE_SYMBOL)
Run the code above in your browser using DataLab