Last chance! 50% off unlimited learning
Sale ends in
This function creates a list with parameters for estimating an HMM-VB,
which is used as an argument for hmmvbTrain
.
trainControl(
ninit0 = 1,
ninit1 = 0,
ninit2 = 0,
epsilon = 1e-04,
diagCov = FALSE
)
The named list with parameters.
The number of initializations for default scheme 0, under which the k-means clustering for entire dataset is used to initialize the model.
The number of initializations for default scheme 1, under which the k-means clustering for a subset of data is used to initialize the model.
The number of initializations for default scheme 2, under which a random subset of data is used as cluster centroids to initialize the model.
Stopping criteria for Baum-Welch algorithm. Should be a small number in range (0,1).
A logical value indicating whether or not variable block covariance matrices will be diagonal.
hmmvbTrain
# setting up multiple initialization schemes
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb,
trControl=trainControl(ninit0=2, ninit1=2, ninit2=2))
show(hmmvb)
# forcing diagonal covariance matrices
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb,
trControl=trainControl(diagCov=TRUE))
show(hmmvb)
Run the code above in your browser using DataLab