LSE(object, A, B, initialGamma = 1000)
"LSE"(object, A, B, initialGamma = 1000)
trainHybridJangOffLine(object, epochs = 5, tolerance = 1e-05, initialGamma = 1000, k = 0.01)
"trainHybridJangOffLine"(object, epochs = 5, tolerance = 1e-05, initialGamma = 1000, k = 0.01)
trainHybridOffLine(object, epochs = 5, tolerance = 1e-05, initialGamma = 1000, eta = 0.05, phi = 0.2, a = 0.01, b = 0.1, delta_alpha_t_1 = list())
"trainHybridOffLine"(object, epochs = 5, tolerance = 1e-05, initialGamma = 1000, eta = 0.05, phi = 0.2, a = 0.01, b = 0.1, delta_alpha_t_1 = list())
trainHybridJangOnLine(object, epochs = 5, tolerance = 1e-15, initialGamma = 1000, k = 0.01, lamda = 0.9, S = matrix(nrow = 0, ncol = 0))
"trainHybridJangOnLine"(object, epochs = 5, tolerance = 1e-15, initialGamma = 1000, k = 0.01, lamda = 0.9, S = matrix(nrow = 0, ncol = 0))ANFIS-classOther ANFIS: ANFIS-class;
anfis3; coef,
coef,ANFIS-method,
coefficients,
coefficients,ANFIS-method,
fitted, fitted,ANFIS-method,
fitted.values,
fitted.values,ANFIS-method,
resid, resid,ANFIS-method,
residuals,
residuals,ANFIS-method,
summary,
summary,ANFIS-method;
getConsequents,
getConsequents,
getConsequents,ANFIS-method,
getConsequents,ANFIS-method,
getErrors, getErrors,
getErrors,ANFIS-method,
getErrors,ANFIS-method,
getPremises, getPremises,
getPremises,ANFIS-method,
getPremises-methods,
getRules, getRules,
getRules,ANFIS-method,
getRules-methods,
getTrainingType,
getTrainingType,
getTrainingType,ANFIS-method,
getTrainingType,ANFIS-method;
initialize,
initialize,ANFIS-method;
plotMF, plotMF,
plotMF,ANFIS-method,
plotMF-methods, plotMFs,
plotMFs,
plotMFs,ANFIS-method,
plotMFs-methods; plot,
plot,ANFIS-method; predict,
predict,ANFIS-method; print,
print,ANFIS-method, show,
show,ANFIS-method; trainSet