transIPCW(object, s, t, x, bw="dpik", window="normal", method.weights="NW",
state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000, conf.level=0.95,
method.boot="percentile", method.est=1, ...)
survTP
.Stime
will be used.FALSE
.bw
.x
is missing or if argument object
doesn't contain a covariate,
an object of class TPmsm
is returned. There are methods for contour
, image
, print
and plot
.
TPmsm
objects are implemented as a list with elements:NULL
.x
is specified and argument object
contains a covariate,
an object of class TPCmsm
is returned. There are methods for print
and plot
.
TPCmsm
objects are implemented as a list with elements:bw="dpik"
then possible options for argument window
are "normal", "box", "epanech", "biweight" or "triweight".
When argument bw
is numeric then argument window
accepts the same options as when bw="dpik"
plus one of "tricube", "triangular" or "cosine".
If method.est=1
then $p_{11}(s,t|X)$, $p_{12}(s,t|X)$ and $p_{22}(s,t|X)$ are estimated according to the following expressions:
$p_{11}(s,t|X)=\frac{1-P(Z \leq t|X)}{1-P(Z \leq s|X)}$,
$p_{12}(s,t|X)=\frac{P(Z \leq t|X)-P(Z \leq s|X)-P(stransAJ
,
transKMPW
,
transKMW
,
transLIN
,
transLS
,
transPAJ
.# set the number of threads
nth <- threadsTP(2)
# Create survTP object with age as covariate
data(heartTP)
heartTP_obj <- with(heartTP, survTP(time1, event1, Stime, event, age=age))
# Compute unconditioned transition probabilities
transIPCW(object=heartTP_obj, s=33, t=412)
# Compute unconditioned transition probabilities with confidence band
transIPCW(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="basic", method.est=2)
# Compute conditional transition probabilities
transIPCW(object=heartTP_obj, s=33, t=412, x=0)
# Compute conditional transition probabilities with confidence band
transIPCW(object=heartTP_obj, s=33, t=412, x=0, conf=TRUE, conf.level=0.95,
n.boot=100, method.boot="percentile", method.est=2)
# restore the number of threads
threadsTP(nth)
Run the code above in your browser using DataLab