tsallis find Tsallis diversities with any scale or the corresponding evenness measures. Function tsallisaccum finds these statistics with accumulating sites.tsallis(x, scales = seq(0, 2, 0.2), norm = FALSE, hill = FALSE)
tsallisaccum(x, scales = seq(0, 2, 0.2), permutations = 100, 
   raw = FALSE, subset, ...)
## S3 method for class 'tsallisaccum':
persp(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...)TRUE diversity values are normalized
    by their maximum (diversity value at equiprobability conditions).FALSE then return summary statistics of
    permutations, and if TRUE then returns the individual
    permutations.FALSE.theta gives the azimuthal direction and
    phi the colatitude.tsallis and
    to graphical functions.tsallis returns a data frame of selected
indices. Function tsallisaccum with argument raw = FALSE
returns a three-dimensional array, where the first dimension are the
accumulated sites, second dimension are the diversity scales, and
third dimension are the summary statistics mean, stdev,
min, max, Qnt 0.025 and Qnt 0.975. With
argument raw = TRUE the statistics on the third dimension are
replaced with individual permutation results.diversity).
If norm = TRUE, tsallis gives values normalized by the
maximum:
$$H_q(max) = \frac{S^{1-q}-1}{1-q}$$
where $S$ is the number of species. As $q$ tends to 1, maximum
is defined as $ln(S)$.
If hill = TRUE, tsallis gives Hill numbers (numbers
equivalents, see Jost 2007):
$$D_q = (1-(q-1) H)^{1/(1-q)}$$
Details on plotting methods and accumulating values can be found on
the help pages of the functions renyi and
renyiaccum.renyi and renyiaccum. An object
of class 'tsallisaccum' can be used with function
rgl.renyiaccum as well. See also settings for
persp.data(BCI)
i <- sample(nrow(BCI), 12)
x1 <- tsallis(BCI[i,])
x1
diversity(BCI[i,],"simpson") == x1[["2"]]
plot(x1)
x2 <- tsallis(BCI[i,],norm=TRUE)
x2
plot(x2)
mod1 <- tsallisaccum(BCI[i,])
plot(mod1, as.table=TRUE, col = c(1, 2, 2))
persp(mod1)
mod2 <- tsallisaccum(BCI[i,], norm=TRUE)
persp(mod2,theta=100,phi=30)Run the code above in your browser using DataLab