# NOT RUN {
library(vegan)
# generate random community ecology data
# using a Poisson distribution
data<-matrix(rpois(5*7,1),5,7)
# relative abundance, distance matrices
propAbundMat<-t(apply(data,1,function(x) x/sum(x)))
rownames(propAbundMat)<-paste0("x", 1:nrow(propAbundMat))
colnames(propAbundMat)<-paste0("y", 1:ncol(propAbundMat))
siteDist<-vegdist(propAbundMat, "bray")
taxaDist<-vegdist(t(propAbundMat), "bray")
dev.new(width=10)
twoWayEcologyCluster(
xDist = siteDist,
yDist = taxaDist,
propAbund = propAbundMat
)
##############################################
# now let's try an example with some pokemon data
data(kanto)
# get distance matrices for sites and taxa
# based on bray-curtis dist
# standardized to total abundance
# standardize site matrix to relative abundance
siteStand <- decostand(kanto, method = "total")
# calculate site distance matrix (Bray-Curtis)
siteDist <- vegdist(siteStand, "bray")
# calculate taxa distance matrix (Bray-Curtis)
# from transposed standardized site matrix
taxaDist <- vegdist(t(siteStand), "bray")
dev.new(width=10)
twoWayEcologyCluster(
xDist = siteDist,
yDist = taxaDist,
propAbund = siteStand
)
# }
Run the code above in your browser using DataLab