This function can perform model reduction for umxGxE() models,
testing dropping a,c & e, as well as c & c, a & a` etc.
It reports the results in a table. Set the format of the table with
umx_set_table_format(). Or set report = "html" to open a
table for pasting into a word processor.
In addition to printing a table, the function returns the preferred model.
umxReduceGxE(
model,
report = c("markdown", "inline", "html", "report"),
baseFileName = "tmp_gxe",
tryHard = c("no", "yes", "ordinal", "search"),
...
)An mxModel() to reduce.
How to report the results. "html" = open in browser.
(optional) custom filename for html output (defaults to "tmp").
Default ('no') uses normal mxRun. "yes" uses mxTryHard. Other options: "ordinal", "search"
Other parameters to control model summary.
best model
Wagenmakers, E.J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin and Review, 11, 192-196. 10.3758/BF03206482.
Other Twin Modeling Functions:
power.ACE.test(),
umxACEcov(),
umxACEv(),
umxACE(),
umxCP(),
umxDoCp(),
umxDoC(),
umxGxE_window(),
umxGxEbiv(),
umxGxE(),
umxIP(),
umxReduceACE(),
umxReduce(),
umxRotate.MxModelCP(),
umxSexLim(),
umxSimplex(),
umxSummarizeTwinData(),
umxSummaryACEv(),
umxSummaryACE(),
umxSummaryDoC(),
umxSummaryGxEbiv(),
umxSummarySexLim(),
umxSummarySimplex(),
umxTwinMaker(),
umx
# NOT RUN {
model = umxReduce(model)
# }
Run the code above in your browser using DataLab