t.test on each row of the
expression dataframe.
The Unitest returns a dataframe containing the results of the test.Usage
uniTest(object)
uniTest(object, value)<-
UniFilter.c(type, alternative, correction, numperm, mu, paired, conflevel, varequ)UniFilter object.
uniTest initializes the following parameters:
type: |
|
a character string specifying the type of test: currently "t.test" (default) or "normal.test". |
|
alternative: |
a character string specifying the alternative hypothesis,
must be one of "two.sided" (default), "greater" or "less". |
correction: |
|
| a correction to adjust p-values for multiple comparisons: | |
correction="none": no correction (default). |
|
correction="bonferroni": Bonferroni correction. |
|
correction="BH" or "fdr": correction for false discovery rate (Benjamini & Hochberg). |
|
correction="BY": correction for false discovery rate (Benjamini & Yekutieli). |
|
correction="hochberg": Hochberg correction. |
|
correction="holm": Holm correction. |
|
correction="wy": Westfall-Young step-down adjusted p-chance (E.Manduchi). |
|
numperm: |
|
| optional number of permutations used to determine p-chance (default is 0). | |
mu: |
a number indicating the true value of the difference in means for a two sample test (default is 0). |
paired: |
|
| a logical indicating whether you want a paired uni-test (default is FALSE). | |
conflevel: |
confidence level of the interval (default is 0.95). |
Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29, 1165--1188.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65--70.
Westfall P.H. and Young S.S. (1993) Resampling-based multiple testing:examples and methods for p-value adjustment. Wiley series in probability and mathematical statistics; Wiley.
Dudoit S., Yang Y.H., Callow M.J., Speed T.P. (2000) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Technical report 578; UC Berkeley.
Manduchi E. (2000) Software: tpWY, see: http://www.cbil.upenn.edu/tpWY/
unifltr <- UniFilter()
uniTest(unifltr) <- c("t.test","two.sided","none",0,0.0,FALSE,0.98,TRUE)
str(unifltr)
Run the code above in your browser using DataLab