Learn R Programming

idm (version 1.3.1)

update.i_mca: Updates a Multiple Correspondence Analysis solution

Description

This function updates the Multiple Correspondence Analysis (MCA) solution on the indicator matrix using the incremental method of Ross et al. (2008)

Usage

"update"(object, incdata, current_rank, ff = 0, nchunk = 1, ...)

Arguments

object
object of class 'i_mca'
incdata
Matrix of incoming data
current_rank
Rank of approximation; if empty then full rank is used
ff
Number between 0 and 1 indicating the "forgetting factor"
nchunk
Number of blocks processed up to that point; default is 1
...
Further arguments passed to update

Value

indmat
Indicator matrix
colcoord
Column standard coordinates
rowcoord
Row standard coordinates
colpcoord
Column principal coordinates
rowpcoord
Row principal coordinates
colctr
Column contributions
colcor
Column squared correlations
rowctr
Row contributions
rowcor
Row squared correlations
sv
Singular values
rowmass
Row masses
colmass
Column masses
levelnames
Attribute names
m
Number of cases processed up to this point
inertia_e
Percentages of explained (adjusted) inertia

References

Ross, D. A., Lim, J., Lin, R. S., & Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1-3), 125-141. Iodice D' Enza, A., & Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022.

See Also

add_es, i_mca, plot.i_mca

Examples

Run this code
data(women, package ="idm")
dat = women[,c(1:4)]
res_mca = i_mca(dat[1:300,])
nchunk = seq(301,2107,258)
for (k in c(1:(length(nchunk)-1)))
{
  res_mca = update(res_mca,dat[c((nchunk[k]+1):nchunk[k+1]),],nchunk=k+1)
}
plot(res_mca, what=c(FALSE, TRUE), animation = FALSE)

Run the code above in your browser using DataLab