Learn R Programming

RMark (version 2.1.1)

var.components: Variance components estimation

Description

Computes estimated effects, standard errors and process variance for a set of estimates

Usage

var.components(theta, design, vcv, LAPACK = TRUE)

Arguments

theta
vector of parameter estimates
design
design matrix for combining parameter estimates
vcv
estimated variance-covariance matrix for parameters
LAPACK
argument passed to call to qr for qr decomposition and inversion

Value

  • A list with the following elements
  • sigmaprocess variance estimate
  • betadataframe with estimates and standard errors of betas for design
  • vcv.betavariance-covariance matrix for beta

Details

Computes estimated effects, standard errors and process variance for a set of estimates using the method of moments estimator described by Burnham and White (2002). The design matrix specifies the manner in which the estimates (theta) are combined. The number of rows of the design matrix must match the length of theta. To get a mean estimate use a column matrix of 1's (e.g., design=matrix(1,ncol=1,nrow=length(theta)). The function returns a list with the estimates of the coefficients for the design matrix (beta) with one value per column in the design matrix and the variance-covariance matrix (vcv.beta) for the beta estimates. The process variance is returned as sigma.

References

BURNHAM, K. P. and G. C. WHITE. 2002. Evaluation of some random effects methodology applicable to bird ringing data. Journal of Applied Statistics 29: 245-264.

Examples

Run this code
data(dipper)
md=mark(dipper,model.parameters=list(Phi=list(formula=~time)))
zz=get.real(md,"Phi",vcv=TRUE)
z=zz$estimates$estimate[1:6]
vcv=zz$vcv.real
var.components(z,design=matrix(rep(1,length(z)),ncol=1),vcv)

Run the code above in your browser using DataLab