Usage
varcov.spatial(coords = NULL, dists.lowertri = NULL,
               cov.model = "matern", kappa = 0.5, nugget = 0,
               cov.pars = stop("no cov.pars argument"), 
               inv = FALSE, det = FALSE,
               func.inv = c("cholesky", "eigen", "svd", "solve"),
               scaled = FALSE,  only.decomposition = FALSE,
               sqrt.inv = FALSE, try.another.decomposition = TRUE,
               only.inv.lower.diag = FALSE)Arguments
coords
an $n \times 2$ matrix with the coordinates
    of the data locations. If not provided
    the argument dists.lowertri should be provided instead.
dists.lowertri
a vector with the lower triangle of the matrix
    of distances between pairs of data points. If not provided
    the argument coords should be provided instead.
cov.model
a string indicating the type of the correlation
    function. More details in the
    documentation for cov.spatial.
    Defaults are equivalent to the exponential model. kappa
values of the additional smoothness parameter, only required by
    the following correlation
    functions: "matern", "powered.exponential", "cauchy" and
    "gneiting.matern".
nugget
the value of the nugget parameter $\tau^2$.
cov.pars
a vector with 2 elements or an $ns \times 2$ matrix with
    the covariance parameters. The first element (if a vector) or first
    column (if a matrix) corresponds to the variance parameter $\sigma^2$.
    second element or column corresponds to the cor
inv
if TRUE the inverse of covariance
    matrix is returned. Defaults to FALSE.
det
if TRUE the  logarithmic of the square root of the
    determinant of the covariance
    matrix is returned. Defaults to FALSE.
func.inv
algorithm used for the decomposition and inversion of the covariance
    matrix. Options are "chol" for Cholesky decomposition,
    "svd" for singular value decomposition and "eigen" for
    eigenvalues/eigenvectors 
scaled
logical indicating whether the covariance matrix should
    be scaled. If TRUE the partial sill
    parameter $\sigma^2$ is set to 1. Defaults to FALSE.
only.decomposition
logical. If TRUE only the square root
    of the covariance matrix is
    returned. Defaults to FALSE.
sqrt.inv
if TRUE the square root of the inverse of  covariance
    matrix is returned. Defaults to FALSE.
try.another.decomposition
logical. If TRUE and the argument
    func.inv is one of "cholesky", "svd" or
    "solve", the matrix decomposition or inversion is tested and,
    if it fails, the argument func.inv
only.inv.lower.diag
logical. If TRUE only the lower triangle and
    the diagonal of the inverse of the covariance matrix are
    returned. Defaults to FALSE.