Learn R Programming

vardpoor (version 0.8.4)

vardcros: Variance estimation for cross-sectional, longitudinal measures for single and multistage stage cluster sampling designs

Description

Computes the variance estimation for cross-sectional and longitudinal measures for any stage cluster sampling designs.

Usage

vardcros(Y, H, PSU, w_final, ID_level1, ID_level2, Dom = NULL, Z = NULL, country = NULL, period, dataset = NULL, X = NULL, countryX = NULL, periodX = NULL, X_ID_level1 = NULL, ind_gr = NULL, g = NULL, q = NULL, datasetX = NULL, linratio = FALSE, percentratio=1, use.estVar = FALSE, ID_level1_max = TRUE, outp_res = FALSE, withperiod = TRUE, netchanges = TRUE, confidence = .95)

Arguments

Y
Variables of interest. Object convertible to data.table or variable names as character, column numbers.
H
The unit stratum variable. One dimensional object convertible to one-column data.table or variable name as character, column number.
PSU
Primary sampling unit variable. One dimensional object convertible to one-column data.table or variable name as character, column number.
w_final
Weight variable. One dimensional object convertible to one-column data.table or variable name as character, column number.
ID_level1
Variable for level1 ID codes. One dimensional object convertible to one-column data.table or variable name as character, column number.
ID_level2
Optional variable for unit ID codes. One dimensional object convertible to one-column data.table or variable name as character, column number.
Dom
Optional variables used to define population domains. If supplied, variables are calculated for each domain. An object convertible to data.table or variable names as character vector, column numbers.
Z
Optional variables of denominator for ratio estimation. If supplied, the ratio estimation is computed. Object convertible to data.table or variable names as character, column numbers. This variable is NULL by default.
country
Variable for the survey countries. The values for each country are computed independently. Object convertible to data.table or variable names as character, column numbers.
period
Variable for the survey periods. The values for each period are computed independently. Object convertible to data.table or variable names as character, column numbers.
dataset
Optional survey data object convertible to data.table.
X
Optional matrix of the auxiliary variables for the calibration estimator. Object convertible to data.table or variable names as character, column numbers.
countryX
Optional variable for the survey countries. The values for each country are computed independently. Object convertible to data.table or variable names as character, column numbers.
periodX
Optional variable of the survey periods and countries. If supplied, residual estimation of calibration is done independently for each time period. Object convertible to data.table or variable names as character, column numbers.
X_ID_level1
Variable for level1 ID codes. One dimensional object convertible to one-column data.table or variable name as character, column number.
ind_gr
Optional variable by which divided independently X matrix of the auxiliary variables for the calibration. One dimensional object convertible to one-column data.table or variable name as character, column number.
g
Optional variable of the g weights. One dimensional object convertible to one-column data.table or variable name as character, column number.
q
Variable of the positive values accounting for heteroscedasticity. One dimensional object convertible to one-column data.table or variable name as character, column number.
datasetX
Optional survey data object in household level convertible to data.table.
linratio
Logical value. If value is TRUE, then the linearized variables for the ratio estimator is used for variance estimation. If value is FALSE, then the gradients is used for variance estimation.
percentratio
Positive numeric value. All linearized variables are multiplied with percentratio value, by default - 1.
use.estVar
Logical value. If value is TRUE, then R function estVar is used for the estimation of covariance matrix of the residuals. If value is FALSE, then R function estVar is not used for the estimation of covariance matrix of the residuals.
ID_level1_max
Logical value. If value is TRUE, then the size of sample for variance under simple random sampling is taken as maximum value of size in ID_level1 . If value is FALSE, then the size of sample for variance under simple random sampling is taken as count of ID_level2 in ID_level1.
outp_res
Logical value. If TRUE estimated residuals of calibration will be printed out.
withperiod
Logical value. If TRUE is value, the results is with period, if FALSE, without period.
netchanges
Logical value. If value is TRUE, then produce two objects: the first object is aggregation of weighted data by period (if available), country, strata and PSU, the second object is an estimation for Y, the variance, gradient for numerator and denominator by country and period (if available). If value is FALSE, then both objects containing NULL.
confidence
Optional positive value for confidence interval. This variable by default is 0.95.

Value

A list with four objects are returned by the function:

References

Guillaume Osier, Yves Berger, Tim Goedeme, (2013), Standard error estimation for the EU-SILC indicators of poverty and social exclusion, Eurostat Methodologies and Working papers, URL http://ec.europa.eu/eurostat/documents/3888793/5855973/KS-RA-13-024-EN.PDF.

Yves G. Berger, Tim Goedeme, Guillame Osier (2013). Handbook on standard error estimation and other related sampling issues in EU-SILC, URL https://ec.europa.eu/eurostat/cros/content/handbook-standard-error-estimation-and-other-related-sampling-issues-ver-29072013_en

Eurostat Methodologies and Working papers, Handbook on precision requirements and variance estimation for ESS household surveys, 2013, URL http://ec.europa.eu/eurostat/documents/3859598/5927001/KS-RA-13-029-EN.PDF.

See Also

domain, lin.ratio

Examples

Run this code
# Example 1
data(eusilc)
set.seed(1)
data <- data.table(eusilc)
data[, year := 2010]
data[, country := "AT"]
data[age<0, age := 0]
PSU <- data[, .N, keyby = "db030"]
PSU[, N := NULL]
PSU[, PSU := trunc(runif(nrow(PSU), 0, 100))]
data <- merge(data, PSU, by = "db030", all = TRUE)
PSU <- eusilc <- 0

data[, strata := "XXXX"]
data[, t_pov := trunc(runif(nrow(data), 0, 2))]
data[, t_dep := trunc(runif(nrow(data), 0, 2))]
data[, t_lwi := trunc(runif(nrow(data), 0, 2))]
data[, exp := 1]
data[, exp2 := 1 * (age < 60)]

# At-risk-of-poverty (AROP)
data[, pov := ifelse (t_pov == 1, 1, 0)]

# Severe material deprivation (DEP)
data[, dep := ifelse (t_dep == 1, 1, 0)]

# Low work intensity (LWI)
data[, lwi := ifelse (t_lwi == 1 & exp2 == 1, 1, 0)]

# At-risk-of-poverty or social exclusion (AROPE)
data[, arope := ifelse (pov == 1 | dep == 1 | lwi == 1, 1, 0)]
data[, id2 := .I]

result11 <- vardcros(Y="arope", H = "strata", 
                     PSU = "PSU", w_final = "rb050",
                     ID_level1 = "db030", ID_level2 = "db030",
                     Dom = "rb090", Z = NULL, country = "country",
                     period = "year", dataset = data,
                     linratio = FALSE, withperiod = TRUE,
                     netchanges = TRUE, confidence = .95)

## Not run: 
# # Example 2
# data(eusilc)
# set.seed(1)
# data <- data.table(rbind(eusilc, eusilc),
#                       year=c(rep(2010, nrow(eusilc)),
#                              rep(2011, nrow(eusilc))))
# data[, country := "AT"]
# data[age<0, age:=0]
# PSU <- data[, .N, keyby = "db030"][, N := NULL]
# PSU[, PSU := trunc(runif(nrow(PSU), 0, 100))]
# data <- merge(data, PSU, by = "db030", all = TRUE)
# PSU <- eusilc <- 0
# data[, strata := "XXXX"]
# data[, strata := as.character(strata)]
# data[, t_pov := trunc(runif(nrow(data), 0, 2))]
# data[, t_dep := trunc(runif(nrow(data), 0, 2))]
# data[, t_lwi := trunc(runif(nrow(data), 0, 2))]
# data[, exp := 1]
# data[, exp2 := 1 * (age < 60)]
# 
# # At-risk-of-poverty (AROP)
# data[, pov := ifelse (t_pov == 1, 1, 0)]
# 
# # Severe material deprivation (DEP)
# data[, dep := ifelse (t_dep == 1, 1, 0)]
# 
# # Low work intensity (LWI)
# data[, lwi := ifelse (t_lwi == 1 & exp2 == 1, 1, 0)]
# 
# # At-risk-of-poverty or social exclusion (AROPE)
# data[, arope := ifelse (pov == 1 | dep == 1 | lwi == 1, 1, 0)]
# data[, id2 := .I]
# 
# result11 <- vardcros(Y = c("pov", "dep", "arope"),
#                      H = "strata", PSU = "PSU", w_final = "rb050",
#                      ID_level1 = "db030", ID_level2 = "id2",
#                      Dom = "rb090", Z = NULL, country = "country",
#                      period = "year", dataset=data, linratio = FALSE, 
#                      withperiod = TRUE, netchanges = TRUE,
#                      confidence = .95)
# 
# data2 <- data[exp2 == 1]
# result12 <- vardcros(Y = c("lwi"), H = "strata",
#                      PSU = "PSU", w_final = "rb050",
#                      ID_level1 = "db030", ID_level2 = "id2",
#                      Dom = "rb090", Z = NULL,
#                      country = "country", period = "year",
#                      dataset = data2, linratio = FALSE, 
#                      withperiod = TRUE, netchanges = TRUE,
#                      confidence = .95)
# 
# 
# ### Example 3
# data(eusilc)
# set.seed(1)
# year <- 2011
# data <- data.table(rbind(eusilc, eusilc, eusilc, eusilc),
#                    rb010=c(rep(2008, nrow(eusilc)),
#                            rep(2009, nrow(eusilc)),
#                            rep(2010, nrow(eusilc)),
#                            rep(2011, nrow(eusilc))))
# data[, rb020 := "AT"]
# 
# data[, u := 1]
# data[age < 0, age := 0]
# data[, strata := "XXXX"]
# PSU <- data[, .N, keyby = "db030"][, N:=NULL]
# PSU[, PSU := trunc(runif(nrow(PSU), 0, 100))]
# data <- merge(data, PSU, by = "db030", all = TRUE)
# thres <- data.table(rb020 = as.character(rep("AT", 4)),
#                     thres = c(11406, 11931, 12371, 12791),
#                     rb010 = 2008 : 2011)
# data <- merge(data, thres, all.x = TRUE, by = c("rb010", "rb020"))
# data[is.na(u), u := 0]
# data <- data[u == 1]
# 
# #############
# # T3        #
# #############
# 
# T3 <- data[rb010 == year - 3]
# T3[, strata1 := strata]
# T3[, PSU1 := PSU]
# T3[, w1 := rb050]
# T3[, inc1 := eqIncome]
# T3[, rb110_1 := db030]
# T3[, pov1 := inc1 <= thres1]
# T3 <- T3[, c("rb020", "rb030", "strata", "PSU", "inc1", "pov1"), with = FALSE]
# 
# #############
# # T2        #
# #############
# T2 <- data[rb010 == year - 2]
# T2[, strata2 := strata]
# T2[, PSU2 := PSU]
# T2[, w2 := rb050]
# T2[, inc2 := eqIncome]
# T2[, rb110_2 := db030]
# setnames(T2, "thres", "thres2")
# T2[, pov2 := inc2 <= thres2]
# T2 <- T2[, c("rb020", "rb030", "strata2", "PSU2", "inc2", "pov2"), with = FALSE]
# 
# #############
# # T1        #
# #############
# T1 <- data[rb010 == year - 1]
# T1[, strata3 := strata]
# T1[, PSU3 := PSU]
# T1[, w3 := rb050]
# T1[, inc3 := eqIncome]
# T1[, rb110_3 := db030]
# setnames(T1, "thres", "thres3")
# T1[, pov3 := inc3 <= thres3]
# T1 <- T1[, c("rb020", "rb030", "strata3", "PSU3", "inc3", "pov3"), with = FALSE]
# 
# #############
# # T0        #
# #############
# T0 <- data[rb010 == year]
# T0[, PSU4 := PSU]
# T0[, strata4 := strata]
# T0[, w4 := rb050]
# T0[, inc4 := eqIncome]
# T0[, rb110_4 := db030]
# setnames(T0, "thres", "thres4")
# T0[, pov4 := inc4 <= thres4]
# T0 <- T0[, c("rb020", "rb030", "strata4", "PSU4", "w4", "inc4", "pov4"), with = FALSE]
# apv <- merge(T3, T2, all = TRUE, by = c("rb020", "rb030"))
# apv <- merge(apv, T1, all = TRUE, by = c("rb020", "rb030"))
# apv <- merge(apv, T0, all = TRUE, by = c("rb020", "rb030"))
# apv <- apv[(!is.na(inc1)) & (!is.na(inc2)) & (!is.na(inc3)) & (!is.na(inc4))]
# apv[, ppr := ifelse(((pov4 == 1) & ((pov1 == 1 & pov2 == 1 & pov3 == 1) | (pov1 == 1 &
#                       pov2 == 1 & pov3 == 0) | (pov1 == 1 & pov2 == 0 & pov3 == 1) |
#                      (pov1 == 0 & pov2 ==1 & pov3 == 1))), 1, 0)]
# 
# data[, id2 := .I]
# result20 <- vardcros(Y = "ppr", H = "strata", PSU = "PSU",
#                     w_final = "w4", ID_level1="rb030",
#                     ID_level2 = "rb030", Dom = NULL,
#                     Z = NULL, country = "rb020",
#                     period = NULL, dataset = apv,
#                     linratio = FALSE, 
#                     withperiod = FALSE,
#                     netchanges = FALSE,
#                     confidence = .95)## End(Not run)

Run the code above in your browser using DataLab