variog4(geodata, coords = geodata$coords, data = geodata$data,
        uvec = "default", trend = "cte", lambda = 1,
        option = c("bin", "cloud", "smooth"),
        estimator.type = c("classical", "modulus"),
        nugget.tolerance = 0, max.dist = NULL, pairs.min = 2,
        bin.cloud = FALSE, direction = c(0, pi/4, pi/2, 3*pi/4),
        tolerance = pi/8, unit.angle = c("radians", "degrees"),
        messages.screen = TRUE, ...)coords
    as described next. Typically an object of the class
    "geodata" - a geoR data-set.
    If not provided the arguments
    coords must be provided instead.geodata$coords, if provided.geodata$data, if provided.option = "bin". The values of uvec defines the mid-points of the bins.
If $uvec[1] > 0$ the first bin is: $0 < u "cte" (constant mean),
    "1st" (a first degree polynomial
    on the coordinates), "2nd" (a second degree polynomial
    on the coordinates), or a form"bin" returns values of
    binned variogram, "cloud" returns the variogram cloud and
    "smooth" returns the kernel smoothed variogram.
    Defaults to "bin"."classical" computes the classical method of
    moments estimator.  "modulus" returns the variogram
    estimator suggested by Hawkins and Cressie (see Cressie, 1993, pg 75).
    Defaults to "classical".option = "bin",
    bins with number of pairs smaller than this
    value are ignored. Defaults to NULL.TRUE and
    option = "bin" the cloud values for each class are
    included in the output. Defaults to FALSE.c(0, 45, 90, 135) (degrees)."degrees" and "radians".ksmooth, if
    option = "smooth".variog4,
  a list with five components.
  The first four elements are estimated variograms for the directions
  provided and the last is the omnidirectional variogram. 
  Each individual component is an object of the class variogram,
  an output of the function variog.variog for variogram calculations and
  plot.variog4 for plotting resultsif(is.R()) data(s100)
var4 <- variog4(s100, max.dist=1)
plot(var4)Run the code above in your browser using DataLab