#generate some test data
library(vbdm)
set.seed(3)
n <- 1000
m <- 20
G <- matrix(rbinom(n*m,2,.01),n,m);
beta1 <- rbinom(m,1,.2)
y <- G%*%beta1+rnorm(n,0,1.3)
#with scaling:
res <- vbdm(y=y,G=G);
T5 <- summary(lm(y~rowSums(scale(G))))$coef[2,4];
cat('vbdm p-value:',res$p.value,'<nT5>p-value:',T5,'<n>')
#vbdm p-value: 0.001345869
#T5 p-value: 0.9481797
#without scaling:
res <- vbdm(y=y,G=G,scaling=FALSE)
T5 <- summary(lm(y~rowSums(G)))$coef[2,4];
cat('vbdm p-value:',res$p.value,'<nT5>p-value:',T5,'<n>')
#vbdm p-value: 0.0005315836
#T5 p-value: 0.904476
#run 100 permutations
set.seed(2)
res <- vbdm(y=y,G=G,scaling=FALSE,nperm=1e2);
cat('vbdm approximate p-value:',res$p.value,'<nvbdm>permutation p-value <',res$p.value.perm,'<n>');
#vbdm approximate p-value: 0.0005315836
#vbdm permutation p-value: 0</n><keyword>vbdm</keyword>
<keyword>association</keyword>
<keyword>genetic</keyword>
<keyword>rare</keyword>
<keyword>variational</keyword></nvbdm></n></nT5></n></nT5>Run the code above in your browser using DataLab