designdist
.
Gower, Bray--Curtis, Jaccard and
Kulczynski indices are good in detecting underlying
ecological gradients (Faith et al. 1987). Morisita, Horn--Morisita,
Binomial and Chao
indices should be able to handle different sample sizes (Wolda 1981,
Krebs 1999, Anderson & Millar 2004),
and Mountford (1962) and Raup-Crick indices for presence--absence data should
be able to handle unknown (and variable) sample sizes.vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ...)
"manhattan"
,
"euclidean"
, "canberra"
, "bray"
, "kulczynski"
,
"jaccard"
, "gower"
, "morisita"
, "horn
decostand
.method ="gower"
which accepts range.global
parameter of
decostand
. .dist
and
return a distance object of the same type.vegan
"jaccard"
), Mountford ("mountford"
),
Raup--Crick ("raup"
), Binomial and Chao indices are discussed below.
The other indices are defined as:
euclidean
$d_{jk} = \sqrt{\sum_i (x_{ij}-x_{ik})^2}$
manhattan
$d_{jk} = \sum_i |x_{ij} - x_{ik}|$
gower
$d_{jk} = (1/M) \sum_i \frac{|x_{ij}-x_{ik}|}{\max x_i-\min
x_i}$
where $M$ is the number of columns (excluding missing
values)
canberra
$d_{jk}=\frac{1}{NZ} \sum_i
\frac{|x_{ij}-x_{ik}|}{x_{ij}+x_{ik}}$
where $NZ$ is the number of non-zero entries.
bray
$d_{jk} = \frac{\sum_i |x_{ij}-x_{ik}|}{\sum_i (x_{ij}+x_{ik})}$
kulczynski
$d_{jk} = 1-0.5(\frac{\sum_i \min(x_{ij},x_{ik})}{\sum_i x_{ij}} +
\frac{\sum_i \min(x_{ij},x_{ik})}{\sum_i x_{ik}} )$
morisita
$d_{jk} = \frac{2 \sum_i x_{ij} x_{ik}}{(\lambda_j +
\lambda_k) \sum_i x_{ij} \sum_i
x_{ik}}$ }
where $\lambda_j = \frac{\sum_i x_{ij} (x_{ij} - 1)}{\sum_i
x_{ij} \sum_i (x_{ij} - 1)}$
horn
Like morisita
, but $\lambda_j = \sum_i
x_{ij}^2/(\sum_i x_{ij})^2$
binomial
$d_{jk} = \sum_i [x_{ij} \log (\frac{x_{ij}}{n_i}) + x_{ik} \log
(\frac{x_{ik}}{n_i}) - n_i \log(\frac{1}{2})]/n_i$
where $n_i = x_{ij} + x_{ik}$Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8, 148--159. Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57--68.
Krebs, C. J. (1999). Ecological Methodology. Addison Wesley Longman.
Legendre, P, & Legendre, L. (1998) Numerical Ecology. 2nd English Edition. Elsevier.
Mountford, M. D. (1962). An index of similarity and its application to classification problems. In: P.W.Murphy (ed.), Progress in Soil Zoology, 43--50. Butterworths.
Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia 50, 296--302.
designdist
can be used for defining your own
dissimilarity index. Alternative dissimilarity functions include
dist
in base R,
daisy
(package dsvdis
(package betadiver
provides indices intended for the analysis of
beta diversity.data(varespec)
vare.dist <- vegdist(varespec)
# Orlóci's Chord distance: range 0 .. sqrt(2)
vare.dist <- vegdist(decostand(varespec, "norm"), "euclidean")
Run the code above in your browser using DataLab