Learn R Programming

viper (version 1.6.0)

viper: VIPER

Description

This function performs Virtual Inference of Protein-activity by Enriched Regulon analysis

Usage

viper(eset, regulon, dnull = NULL, pleiotropy = FALSE, nes = TRUE, method = c("scale", "rank", "mad", "ttest", "none"), bootstraps = 0, minsize = 25, adaptive.size = FALSE, eset.filter = TRUE, pleiotropyArgs = list(regulators = 0.05, shadow = 0.05, targets = 10, penalty = 20, method = "adaptive"), cores = 1, verbose = TRUE)

Arguments

eset
ExpressionSet object or Numeric matrix containing the expression data or gene expression signatures, with samples in columns and genes in rows
regulon
Object of class regulon
dnull
Numeric matrix for the null model, usually generated by nullTtest
pleiotropy
Logical, whether correction for pleiotropic regulation should be performed
nes
Logical, whether the enrichment score reported should be normalized
method
Character string indicating the method for computing the single samples signature, either scale, rank, mad, ttest or none
bootstraps
Integer indicating the number of bootstraps iterations to perform. Only the scale method is implemented with bootstraps.
minsize
Integer indicating the minimum number of targets allowed per regulon
adaptive.size
Logical, whether the weighting scores should be taken into account for computing the regulon size
eset.filter
Logical, whether the dataset should be limited only to the genes represented in the interactome
pleiotropyArgs
list of 5 numbers for the pleotropy correction indicating: regulators p-value threshold, pleiotropic interaction p-value threshold, minimum number of targets in the overlap between pleiotropic regulators, penalty for the pleiotropic interactions and the method for computing the pleiotropy, either absolute or adaptive
cores
Integer indicating the number of cores to use (only 1 in Windows-based systems)
verbose
Logical, whether progression messages should be printed in the terminal

Value

A matrix of inferred activity for each regulator gene in the network across all samples

See Also

msviper

Examples

Run this code
data(bcellViper, package="bcellViper")
d1 <- exprs(dset)
res <- viper(d1, regulon)
dim(d1)
d1[1:5, 1:5]
regulon
dim(res)
res[1:5, 1:5]

Run the code above in your browser using DataLab