Learn R Programming

supraHex (version 1.10.0)

visHexMapping: Function to visualise various mapping items within a supra-hexagonal grid

Description

visHexMapping is supposed to visualise various mapping items within a supra-hexagonal grid

Usage

visHexMapping(sObj, mappingType = c("indexes", "hits", "dist", "antidist", "bases", "customized"), labels = NULL, height = 7, margin = rep(0.1, 4), area.size = 1, gp = grid::gpar(cex = 0.7, font = 1, col = "black"), border.color = "black", fill.color = "transparent", lty = 1, lwd = 1, lineend = "round", linejoin = "round", clip = c("on", "inherit", "off"), newpage = T)

Arguments

sObj
an object of class "sMap" or "sInit" or "sTopol"
mappingType
the mapping type, can be "indexes", "hits", "dist", "antidist", "bases", and "customized"
labels
NULL or a vector with the length of nHex
height
a numeric value specifying the height of device
margin
margins as units of length 4 or 1
area.size
an inteter or a vector specifying the area size of each hexagon
gp
an object of class "gpar". It is the output from a call to the function "gpar" (i.e., a list of graphical parameter settings)
border.color
the border color for each hexagon
fill.color
the filled color for each hexagon
lty
the line type for each hexagon. 0 for 'blank', 1 for 'solid', 2 for 'dashed', 3 for 'dotted', 4 for 'dotdash', 5 for 'longdash', 6 for 'twodash'
lwd
the line width for each hexagon
lineend
the line end style for each hexagon. It can be one of 'round', 'butt' and 'square'
linejoin
the line join style for each hexagon. It can be one of 'round', 'mitre' and 'bevel'
clip
either "on" for clipping to the extent of this viewport, "inherit" for inheriting the clipping region from the parent viewport, or "off" to turn clipping off altogether
newpage
logical to indicate whether to open a new page. By default, it sets to true for opening a new page

Value

invisible

See Also

sDmat, sDmatCluster, visHexGrid

Examples

Run this code
# 1) generate data with an iid matrix of 1000 x 9
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")

# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)

# 3) visualise supported mapping items within a supra-hexagonal grid
# 3a) for indexes of hexagons
visHexMapping(sMap,mappingType="indexes")
# 3b) for the number of input data vectors hitting the hexagons
visHexMapping(sMap,mappingType="hits")
# 3c) for distance (in high-dimensional input space) to neighbors (defined in 2D output space)
visHexMapping(sMap,mappingType="dist")
# 3d) for clusters/bases partitioned from the sMap
visHexMapping(sMap,mappingType="bases")

Run the code above in your browser using DataLab