The function calculates organisms volume based on geometric approximation.
# S3 method for total
volume(data, model, ...)
data frame containing size data. Size data parameters may vary according to chosen model, see Details.
character informing geometric model to calculate volume, the models options are listed below:
'1hl'
: sphere
'2sl'
: half-sphere
'3hl'
: prolate spheroid
'4hl'
: cone or double cone
'6fs'
: paraboloid
'7fs'
: dome
'8hl'
: cylinder
'10hl'
: ellipsoid
'11fs'
: elliptic cone
'12v'
: cone + half ellipsoid
'13hlsl'
: gomphonemoid
'14hl'
: prism on elliptic base/elliptic cylinder
'15hl'
: half elliptic prism
'17fs'
: triangular dypyramid
'ahx'
: area x height
other parameters.
A `data.frame` or numeric object, consisting of calculated individual volume along with biovolume if the pco
is informed.
These geometric models applied in this function are based and adapted from microalgae models developed by Hillebrand et al. (1999) - ('.hl')
, Sun and Liu (2003) - ('.sl')
and Vadrucci, Cabrini and Basset (2007) - ('.v')
, plus other adapted models ('.fs')
.
The models can be a variable in data
if specified as model
.The size data parameters should follow the specified measures determined by each model, where \(d_one\) is minor diameter, \(d_two\) is major diameter and \(h\) is height.
'1hl'
|
\(V = (pi * (d_one^3))/6\) |
'2sl'
|
\(V = (pi * (d_one^3))/12\) |
'3hl'
|
\(V = (pi * h * (d_one^2))/6\) |
'4hl'
|
\(V = (pi * h * (d_one^2))/12\) |
'6fs'
|
\(V = (pi * hx * (d_one^2))/8\) |
where \(hx\) is a function of test height for trochamminids. | |
'7fs'
|
\(V = (pi * h * (4 * (h^2) + 3 * (d_one^2)))/24\) |
'8hl'
|
\(V = (pi * h * (d_one^2))/4\) |
'10hl'
|
\(V = (pi * h * d_one * d_two)/6\) |
'11fs'
|
\(V = (pi * h * d_one * d_two)/12\) |
'12v'
|
\(V = (pi * h * d_one * d_two)/12\) |
'13hlsl'
|
\(V = ((d_one * d_two)/4) * (d_one + ((pi/4) - 1) * d_two) * asin(h/(2*d_one))\) |
'14hl'
|
\(V = (pi * h * d_one * d_two)/4\) |
'15hl'
|
\(V = pi * h * d_one * d_two)/4\) |
'17fs'
|
\(V = ((length * width)/2) * h)/3\) |
Hillebrand, H., D<U+00FC>rselen, C.D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403<U+2013>424. doi:10.1046/j.1529-8817.1999.3520403.x
Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11), 1331<U+2013>1346. doi:10.1093/plankt/fbg096
Vadrucci, M. R., Cabrini, M., & Basset, A. (2007). Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion. Transitional Waters Bulletin, 2, 83<U+2013>102. doi:10.1285/i1825229Xv1n2p83
# NOT RUN {
#Ammonia size data
data("ammonia")
#calculate test volume
volume.total(ammonia, model = "10hl")
# }
Run the code above in your browser using DataLab