Learn R Programming

truncgof (version 0.6-0)

w2.test: Cram/'er-von Mises test

Description

Cram/'er-von Mises test providing a comparison of a fitted distribution with the empirical distribution.

Usage

w2.test(x, distn, fit, H = NA, sim = 100, tol = 1e-04, estfun = NA)

Arguments

x
a numeric vector of data values
distn
character string naming the null distribution
fit
list of null distribution parameters
H
a treshold value
sim
maximum number of szenarios in the Monte-Carlo simulation
tol
if the difference of two subsequent p-value calculations is lower than tol the Monte-Carlo simulation is discontinued
estfun
an function as character string or NA (default). See mctest.

Value

A list with class "mchtest" containing the following components
statistic
the value of the Cram\'er-von Mies statistic
treshold
the treshold value
p.value
the p-value of the test
data.name
a character string giving the name of the data
method
the character string "Cramer-von Mises test"
sim.no
number of simulated szenarios in the Monte-Carlo simulation

Details

The Cram/'er-von Mies test compares the null distribution with the empirical distribution function of the observed data, where left truncated data samples are allowed. The test statistic is given by $$W^2 = \frac{n}{3} + \frac{n z_H}{1-z_H} + \frac{1}{n(1-z_H)}\sum_{j=1}^n(1-2j)z_j + \frac{1}{(1-z_H)^2}\sum_{j=1}^{n}(z_j-z_H)^2$$

with $z_H = F_theta(H)$ and $ z_j=F_theta(x_j)$, where $x_1, \dots, x_n$ are the ordered data values. Here, $F_theta$ is the null distribution.

References

Chernobay, A., Rachev, S., Fabozzi, F. (2005), Composites goodness-of-fit tests for left-truncated loss samples, Tech. rep., University of Calivornia Santa Barbara

See Also

ad2up.test, ad2.test for other quadratic class tests and ks.test, v.test, adup.test, ad.test for supremum class tests. For more details see mctest.

Examples

Run this code
set.seed(123)
treshold <- 10
xc  <- rlnorm(100, 2, 2)     # complete sample
xt <- xc[xc >= treshold]     # left truncated sample
w2.test(xt, "plnorm", list(meanlog = 2, sdlog = 2), H = 10)

Run the code above in your browser using DataLab