
L
vector or matrix of numeric contrasts. Requires that the
model information matrix be computed (including SE = TRUE
when using the EM method). Use
wald(model)
to observe how the information matrix columns are named, especially if
the estimated model contains constrained parameters (e.g., 1PL).wald(object, L, C = 0)
mirt
, bfactor
,
multipleGroup
, or mixedmirt
length(C) == ncol(L)
. By default a vector of 0's is constructed#View parnumber index
data(LSAT7)
data <- expand.table(LSAT7)
mod <- mirt(data, 1, SE = TRUE)
coef(mod)
# see how the information matrix relates to estimated parameters, and how it lines up
# with the parameter index
(infonames <- wald(mod))
index <- mod2values(mod)
index[index$est, ]
#second item slope equal to 0?
L <- matrix(0, 1, 10)
L[1,3] <- 1
wald(mod, L)
#simultaneously test equal factor slopes for item 1 and 2, and 4 and 5
L <- matrix(0, 2, 10)
L[1,1] <- L[2, 7] <- 1
L[1,3] <- L[2, 9] <- -1
L
wald(mod, L)
#logLiklihood tests (requires estimating a new model)
cmodel <- mirt.model('theta = 1-5
CONSTRAIN = (1,2, a1), (4,5, a1)')
mod2 <- mirt(data, cmodel)
#or, eqivalently
#mod2 <- mirt(data, 1, constrain = list(c(1,5), c(13,17)))
anova(mod2, mod)
Run the code above in your browser using DataLab