## Not run: 
# ## The following example is adopted from Veleda et al, 2012:
# 
# add.noise=TRUE
# 
# series.length = 3*128*24
# x1 = periodic.series(start.period = 1*24, length = series.length)
# x2 = periodic.series(start.period = 2*24, length = series.length)
# x3 = periodic.series(start.period = 4*24, length = series.length)
# x4 = periodic.series(start.period = 8*24, length = series.length)
# x5 = periodic.series(start.period = 16*24, length = series.length)
# x6 = periodic.series(start.period = 32*24, length = series.length)
# x7 = periodic.series(start.period = 64*24, length = series.length)
# x8 = periodic.series(start.period = 128*24, length = series.length)
# 
# x = x1 + x2 + x3 + x4 + 3*x5 + x6 + x7 + x8 
# y = x1 + x2 + x3 + x4 + 3*x5 + x6 + 3*x7 + x8
# 
# if (add.noise == TRUE){
#     x = x + rnorm(length(x))
#     y = y + rnorm(length(y))
# }
# 
# my.date = seq(as.POSIXct("2014-10-14 00:00:00","%F %T"), by="hour", 
#               length.out=series.length)  
# my.data = data.frame(date=my.date, x=x, y=y)
# 
# ts.plot(ts(my.data$x, start=0, frequency=24), 
#      ts(my.data$y, start=0, frequency=24),
#      type="l", col=1:2, 
#      xlab="time (days)", ylab="hourly data", 
#      main="a series of hourly data with periods of 1, 2, 4, 8, 16, 32, 64, and 128 days",
#      sub="(different amplitudes at periods 16 and 64)")
# legend("topright", legend=c("x","y"), col=1:2, lty=1)
# 
# ## computation of cross-wavelet power and wavelet coherence:
# my.wc = analyze.coherency(my.data, c("x","y"), loess.span=0, 
#                           dt=1/24, dj=1/20, 
#                           window.size.t=1, window.size.s=1/2, 
#                           lowerPeriod=1/4, 
#                           make.pval=T, n.sim=10)
# 
# ## plot of cross-wavelet power, with color breakpoints according to quantiles:
# wc.image(my.wc, timelab="time (days)", periodlab="period (days)", 
#          main="cross-wavelet power",
#          legend.params=list(lab="cross-wavelet power levels (quantiles)"))
# 
# ## The same plot, but with equidistant color breakpoints: 
# wc.image(my.wc, color.key="i", timelab="time (days)", periodlab="period (days)", 
#          main="cross-wavelet power",
#          legend.params=list(lab="cross-wavelet power levels (equidistant levels)"))
# 
# ## The same plot, but adopting a palette of gray colors:
# wc.image(my.wc, color.key="i", timelab="time (days)", periodlab="period (days)", 
#          main="cross-wavelet power", 
#          legend.params=list(lab="cross-wavelet power levels (equidistant levels)"),
#          color.palette="gray( (1:n.levels)/n.levels )", plot.arrow=F)
#          
# ## The same plot, but with yellow arrows and calendar axis:
# wc.image(my.wc, color.key="i", timelab="", periodlab="period (days)", 
#          main="cross-wavelet power", 
#          legend.params=list(lab="cross-wavelet power levels (equidistant levels)"),
#          color.palette="gray( (1:n.levels)/n.levels )", 
#          col.arrow="yellow", 
#          show.date=T)
#          
# ## With additional ridge:
# wc.image(my.wc, color.key="i", timelab="", periodlab="period (days)", 
#          main="cross-wavelet power", 
#          legend.params=list(lab="cross-wavelet power levels (equidistant levels)"),
#          color.palette="gray( (1:n.levels)/n.levels )", 
#          col.arrow="yellow", 
#          show.date=T,
#          plot.ridge=T, col.ridge="red")         
#          
#          
# ## The same plot, but with yellow arrows and individualized calendar axis:
# my.plot = wc.image(my.wc, color.key="i", timelab="", periodlab="period (days)", 
#              main="cross-wavelet power", 
#              legend.params=list(lab="cross-wavelet power levels (equidistant levels)"),
#              color.palette="gray( (1:n.levels)/n.levels )", 
#              col.arrow="yellow", 
#              label.time.axis =F)                   
# ## recover plot region:
# par(new=T, plt=my.plot$image.plt)
# ## empty plot
# plot(my.date, rep(1,series.length), type="n",
#      xaxs = "i", yaxs ="i", xaxt="n", yaxt="n", 
#      xlab="", ylab="")
# ## individualized calendar axis:
# axis.POSIXct(1, at=
#  seq(as.POSIXct("2014-11-01 00:00:00", "%F %T"), my.date[length(my.date)], by="month"), 
#  format="%b %Y", las=2)
# ## return to default plot region:
# par(my.plot$op)         
# 
# ## plot of wavelet coherence, with color breakpoints according to quantiles:
# wc.image(my.wc, which.image="wc", 
#   timelab="time (days)", periodlab="period (days)", 
#   main="wavelet coherence",
#   legend.params=list(lab="wavelet coherence levels (quantiles)", lab.line=3.5, 
#                      label.digits=3))
# ## plot of wavelet coherence, but with equidistant color breakpoints:
# wc.image(my.wc, which.image="wc", color.key="i", 
#          timelab="time (days)", periodlab="period (days)", 
#          main="wavelet coherence",
#          legend.params=list(lab="wavelet coherence levels (equidistant levels)"))         
#          
# ## End(Not run)
Run the code above in your browser using DataLab