Transformation function of one variable (vector sample)
weightTSA(Y, c, upper = TRUE, type="indicTh", param=1)
The output vector
The threshold
TRUE for upper threshold and FALSE for lower threshold
The weight function type ("indicTh", "zeroTh", logistic", "exp1side"):
indicTh : indicator-thresholding
zeroTh : zero-thresholding (keeps the variable value above (upper=TRUE case) or below the threshold)
logistic : logistic transformation at the threshold
exp1side : exponential transformation above (upper=TRUE case) or below the threshold (see Raguet and Marrel)
The parameter value for "logistic" and "exp1side" types
The vector sample of the transformed variable
The weight functions depend on a threshold \(c\) and/or a smooth relaxation. These functions are defined as follows $$if type = "indicTh" --> w = 1_(Y>c),$$ $$if type = "zeroTh" --> w = Y*1_(Y>c),$$ $$if type = "logistic" --> w = 1/(1 + exp(-param*(Y-c)/abs(c))),$$ $$if type = "exp1side" --> w = exp{-max(c - Y, 0)/(param.\sigma(Y)/5)},$$ where \(\sigma(Y)\) is an estimation of the standard deviation of Y and \(param = 1\) is a parameter tuning the smoothness.
H. Raguet and A. Marrel, Target and conditional sensitivity analysis with emphasis on dependence measures, Preprint, https://hal.archives-ouvertes.fr/hal-01694129
A. Spagnol, Kernel-based sensitivity indices for high-dimensional optimization problems, PhD Thesis, Universite de Lyon, 2020
Spagnol A., Le Riche R., Da Veiga S. (2019), Global sensitivity analysis for optimization with variable selection, SIAM/ASA J. Uncertainty Quantification, 7(2), 417--443.
# NOT RUN {
n <- 100 # sample size
c <- 1.5
Y <- rnorm(n)
Yt <- weightTSA(Y, c)
# }
Run the code above in your browser using DataLab