Last chance! 50% off unlimited learning
Sale ends in
svyimputationList
objects and returns a list of results suitable
for MIcombine
. The analysis may be specified as an expression or
as a function.## S3 method for class 'svyimputationList':
with(data, expr, fun, ...,multicore=getOption("survey.multicore"))
## S3 method for class 'svyimputationList':
subset(x, subset,...)
svyimputationList
objectmulticore
package to distribute imputed data sets over multiple processors?MIcombine
, in the mitools
packagelibrary(mitools)
data.dir<-system.file("dta",package="mitools")
files.men<-list.files(data.dir,pattern="m.\\.dta$",full=TRUE)
men<-imputationList(lapply(files.men, foreign::read.dta))
files.women<-list.files(data.dir,pattern="f.\\.dta$",full=TRUE)
women<-imputationList(lapply(files.women, foreign::read.dta))
men<-update(men, sex=1)
women<-update(women,sex=0)
all<-rbind(men,women)
designs<-svydesign(id=~id, strata=~sex, data=all)
designs
results<-with(designs, svymean(~drkfre))
MIcombine(results)
summary(MIcombine(results))
Run the code above in your browser using DataLab