SparkR (version 3.1.2)

withColumn: WithColumn

Description

Return a new SparkDataFrame by adding a column or replacing the existing column that has the same name.

Usage

withColumn(x, colName, col)

# S4 method for SparkDataFrame,character withColumn(x, colName, col)

Arguments

x

a SparkDataFrame.

colName

a column name.

col

a Column expression (which must refer only to this SparkDataFrame), or an atomic vector in the length of 1 as literal value.

Value

A SparkDataFrame with the new column added or the existing column replaced.

Details

Note: This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even StackOverflowException. To avoid this, use select with the multiple columns at once.

See Also

rename mutate subset

Other SparkDataFrame functions: SparkDataFrame-class, agg(), alias(), arrange(), as.data.frame(), attach,SparkDataFrame-method, broadcast(), cache(), checkpoint(), coalesce(), collect(), colnames(), coltypes(), createOrReplaceTempView(), crossJoin(), cube(), dapplyCollect(), dapply(), describe(), dim(), distinct(), dropDuplicates(), dropna(), drop(), dtypes(), exceptAll(), except(), explain(), filter(), first(), gapplyCollect(), gapply(), getNumPartitions(), group_by(), head(), hint(), histogram(), insertInto(), intersectAll(), intersect(), isLocal(), isStreaming(), join(), limit(), localCheckpoint(), merge(), mutate(), ncol(), nrow(), persist(), printSchema(), randomSplit(), rbind(), rename(), repartitionByRange(), repartition(), rollup(), sample(), saveAsTable(), schema(), selectExpr(), select(), showDF(), show(), storageLevel(), str(), subset(), summary(), take(), toJSON(), unionAll(), unionByName(), union(), unpersist(), withWatermark(), with(), write.df(), write.jdbc(), write.json(), write.orc(), write.parquet(), write.stream(), write.text()

Examples

Run this code
# NOT RUN {
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
newDF <- withColumn(df, "newCol", df$col1 * 5)
# Replace an existing column
newDF2 <- withColumn(newDF, "newCol", newDF$col1)
newDF3 <- withColumn(newDF, "newCol", 42)
# Use extract operator to set an existing or new column
df[["age"]] <- 23
df[[2]] <- df$col1
df[[2]] <- NULL # drop column
# }

Run the code above in your browser using DataCamp Workspace