Learn R Programming

wle (version 0.5)

wle.onestep: A One-Step Weighted Likelihood Estimator for Linear model

Description

This function evaluate the One-step weighted likelihood estimator for the regression and scale parameters.

Usage

wle.onestep(formula, data=list(), model=TRUE, x=FALSE, 
            y=FALSE, ini.param, ini.scale, raf="HD", 
            smooth=0.0320018, num.step=1, contrasts=NULL)

Arguments

formula
a symbolic description of the model to be fit. The details of model specification are given below.
data
an optional data frame containing the variables in the model. By default the variables are taken from the environment which wle.stepwise is called from.
model, x, y
logicals. If TRUE the corresponding components of the fit (the model frame, the model matrix, the response.)
ini.param
starting values for the coefficients.
ini.scale
starting values for the scale parameters.
raf
type of Residual adjustment function to be use:

raf="HD": Hellinger Distance RAF,

raf="NED": Negative Exponential Disparity RAF,

raf="SCHI2": Symmetric Chi-Squared Disparity RAF.

smooth
the value of the smoothing parameter.
num.step
number of the steps.
contrasts
an optional list. See the contrasts.arg of model.matrix.default.

Value

  • wle.onestep returns an object of class "wle.onestep".

    Only print method is implemented for this class.

    The object returned by wle.onestep are:

  • coefficientsthe parameters estimator.
  • standard.erroran estimation of the standard error of the parameters estimator.
  • scalean estimation of the error scale.
  • residualsthe unweighted residuals from the estimated model.
  • fitted.valuesthe fitted values from the estimated model.
  • tot.weightsthe sum of the weights divide by the number of observations.
  • weightsthe weights associated to each observation.
  • callthe match.call().
  • contrasts
  • xlevels
  • termsthe model frame.
  • modelif model=TRUE a matrix with first column the dependent variable and the remain column the explanatory variables for the full model.
  • xif x=TRUE a matrix with the explanatory variables for the full model.
  • yif y=TRUE a vector with the dependent variable.

References

Agostinelli, C., (1997). A one-step robust estimator based on the weighted likelihood methodology, Working Paper n. 1997.16, Department of Statistics, University of Padova.

Agostinelli, C., (1998). Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D Thesis, Department of Statistics, University of Padova.

Agostinelli, C., Markatou, M., (1998). A one-step robust estimator for regression based on the weighted likelihood reweighting scheme, Statistics & Probability Letters, Vol. 37, n. 4, 341-350.

Agostinelli, C., (1998). Verosimiglianza pesata nel modello di regressione lineare, XXXIX Riunione scientifica della Societ`a Italiana di Statistica, Sorrento 1998.

See Also

wle.smooth an algorithm to choose the smoothing parameter for normal distribution and normal kernel, wle.lm a function for estimating linear models with normal distribution error and normal kernel.

Examples

Run this code
library(wle)
library(lqs)

data(artificial)

result.lts <- lqs(y.artificial~x.artificial, 
                 method = "lts")

result.wle <- wle.onestep(y.artificial~x.artificial,
               ini.param=result.lts$coefficients,
               ini.scale=result.lts$scale[1])

result.wle

Run the code above in your browser using DataLab