Last chance! 50% off unlimited learning
Sale ends in
Compute the measure of association known as Schweizer--Wolff Sigma
which is rhoCOP
) of a copula:
If a copula is positively quadrant dependent (PQD, see isCOP.PQD
) then
wolfCOP(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)
A copula function;
Vector of parameters or other data structure, if needed, to pass to the copula;
A logical controlling whether an optional R data.frame
in para
is used to compute the -1
, then the message concerning CPU effort will be surpressed;
Should brute force be used instead of two nested integrate()
functions in R to perform the double integration;
The brute=TRUE
) integration; and
Additional arguments to pass.
The value for
P<U+00F3>czos, Barnab<U+00E1>s, Krishner, Sergey, P<U+00E1>l, Szepesv<U+00E1>ri, Csaba, and Schneider, Jeff, 2015, Robust nonparametric copula based dependence estimators: Accessed on August 11, 2015 at https://www.cs.cmu.edu/~bapoczos/articles/poczos11nipscopula.pdf.
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
blomCOP
, footCOP
, giniCOP
,
hoefCOP
, rhoCOP
, tauCOP
,
joeskewCOP
, uvlmoms
# NOT RUN {
wolfCOP(cop=PSP) # 0.4784176
# }
# NOT RUN {
# }
# NOT RUN {
n <- 1000; UV <- simCOP(n=n, cop=N4212cop, para=7.53, graphics=FALSE)
wolfCOP(cop=N4212cop, para=7.53) # 0.9884666 (theoretical)
wolfCOP(para=UV, as.sample=TRUE) # 0.9884174 (sample)
# }
# NOT RUN {
# }
# NOT RUN {
# Redo D from Note section above
para <- list(cop1=PLcop, cop2=PLcop, para1=0.145, para2=21.9,
alpha=0.81, beta=0.22)
D <- simCOP(n=300, cop=composite2COP, para=para,
cex=0.5, col=rgb(0,0,0,0.2), pch=16)
the.grid <- EMPIRgrid(para=D)
the.persp <- persp(the.grid$empcop, theta=-25, phi=20, shade=TRUE,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
empcop <- EMPIRcopdf(para=D) # data.frame of all points
points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp), cex=0.7,
col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16)
points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),
col=PQD$local.PQD+1, pch=1)
layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE), respect = TRUE)
PQD.NQD.cop <- gridCOP(cop=composite2COP, para=para)
Pi <- gridCOP(cop=P)
RHO <- PQD.NQD.cop - Pi; SIG <- abs(RHO)
the.persp <- persp(PQD.NQD.cop, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("The Copula that has local PQD and NQD", cex=0.5)
the.persp <- persp(Pi, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("Independence (Pi)", cex=0.5)
the.persp <- persp(RHO, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("Copula delta: Integrand of Spearman Rho", cex=0.5)
the.persp <- persp(SIG, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("abs(Copula delta): Integrand of Schweizer-Wolff Sigma", cex=0.5)#
# }
Run the code above in your browser using DataLab