Last chance! 50% off unlimited learning
Sale ends in
Load xgboost model from the binary model file.
xgb.load(modelfile)
the name of the binary input file.
An object of xgb.Booster
class.
The input file is expected to contain a model saved in an xgboost-internal binary format
using either xgb.save
or cb.save.model
in R, or using some
appropriate methods from other xgboost interfaces. E.g., a model trained in Python and
saved from there in xgboost format, could be loaded from R.
Note: a model saved as an R-object, has to be loaded using corresponding R-methods,
not xgb.load
.
# NOT RUN {
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
xgb.save(bst, 'xgb.model')
bst <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')
pred <- predict(bst, test$data)
# }
Run the code above in your browser using DataLab