
These are functions for running the generalized additive model within Xpose 4, summarizing its results, and plotting them.
xp.gam(object,
parnam=xvardef("parms", object),
covnams = xvardef("covariates", object),
wts.col=NULL,
ask.for.input=TRUE,
overwrite=TRUE,
...)check.gamobj()
xp.akaike.plot(title = NULL,
xlb = "Akaike value",
ylb = "Models",
gamobj=NULL,
...)
xp.check.scope(object,
covnam = xvardef("covariates", object),
nmods = object@Prefs@Gam.prefs$nmods,
smoother1 = object@Prefs@Gam.prefs$smoother1,
smoother2 = object@Prefs@Gam.prefs$smoother2,
smoother3 = object@Prefs@Gam.prefs$smoother3,
smoother4 = object@Prefs@Gam.prefs$smoother4,
arg1 = object@Prefs@Gam.prefs$arg1,
arg2 = object@Prefs@Gam.prefs$arg2,
arg3 = object@Prefs@Gam.prefs$arg3,
arg4 = object@Prefs@Gam.prefs$arg4,
excl1 = object@Prefs@Gam.prefs$excl1,
excl2 = object@Prefs@Gam.prefs$excl2,
excl3 = object@Prefs@Gam.prefs$excl3,
excl4 = object@Prefs@Gam.prefs$excl4,
extra = object@Prefs@Gam.prefs$extra,
...)
xp.cook(gam.object)
xp.ind.inf.fit(plot.ids = TRUE,
idscex = 0.7,
ptscex = 0.7,
title = NULL,
recur = FALSE,
xlb = NULL,
ylb = NULL,
gamobj=NULL,
...)
xp.ind.inf.terms(xlb = NULL,
ylb = NULL,
plot.ids = TRUE,
idscex = 0.7,
ptscex = 0.7,
prompt = TRUE,
gamobj=NULL,
...)
xp.ind.stud.res(title = NULL,
recur = FALSE,
xlb = NULL,
ylb = NULL,
gamobj=NULL)
xp.plot(plot.ids = TRUE,
idscex = 0.7,
ptscex = 0.7,
prompt = TRUE,
gamobj=NULL,
...)
xp.summary(gamobj=NULL)
An xpose.data object.
A text string indicating plot title. If NULL
, left blank.
A text string indicating x-axis legend. If NULL
, left blank.
A text string indicating y-axis legend. If NULL
, left blank.
A list of covariate variables to use in the GAM search.
Column in the object@Data.firstonly to use as weights on the parnam values.
The number of modelfits to use when setting GAM scope. The default is 3.
Smoother for each model.
Smoother for each model.
Smoother for each model.
Smoother for each model.
Argument for model 1.
Argument for model 2.
Argument for model 3.
Argument for model 4.
Covariate exclusion from model 1.
Covariate exclusion from model 2.
Covariate exclusion from model 3.
Covariate exclusion from model 4.
Scope parameter for the GAM.
A GAM object (see gam
.
Logical, specifies whether or not ID numbers should be displayed.
ID label size.
Point size.
If dispersion should be used in the GAM object.
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is TRUE.
The parameter to run the GAM on.
The covariates to test on the parnam
Should the program ask for input from the user? Can be TRUE or FALSE.
Should we overwrite the gam object stored in memory if it exists already. Can be TRUE or FALSE.
A GAM object to use in the plot. IF null then the user is asked to choose from a list of GAM objects in memory.
Other arguments passed to the GAM functions.
A GAM fit.
Forthcoming.
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)
## Run a GAM
xp.gam(xpdb)
## Summarize GAM
xp.summary()
## An Akaike plot of the results
xp.akaike.plot()
## Studentized residuals
xp.ind.stud.res()
## Individual influence on GAM fit
xp.ind.inf.fit(plot.ids=xpdb@Prefs@Gam.prefs$plot.ids)
## Individual influence on GAM terms
xp.ind.inf.terms(plot.ids=xpdb@Prefs@Gam.prefs$plot.ids)
Run the code above in your browser using DataLab