xprnSet
and XprnSet
create a xprnSet and XprnSet data class structure, respectively. The XprnSet structure contains positive data, which corresponds to measured intensities, abundance levels, etc., whereas the xprnSet structure contains the log of the intensities, log abundance levels, etc.
Functions nxprnSet
and nXprnSet
perform additional checkings on the input data:- it adds unique names to unnamed input matrices or numeric data,
- it removes columns and rows of data in x and y that do not have any finite element,
- it assures that all column and row names are different by adding a number to duplicated names,
- it assures that row names of input x and row names of input y are identical feature by feature.
xprnSet(phenoData, exprs, featureData, ...)
XprnSet(phenoData, exprs, featureData, ...)
nxprnSet(x, pdata = NULL, fdata = NULL, annot = NULL,...)
nXprnSet(x, pdata = NULL, fdata = NULL, annot = NULL,...)
Biobase
package.
Biobase
package.
Biobase
package.
Biobase
package.
nxprnSetPair
,nxprnSet
, nXprnSet
,
xprnSet
,XprnSet
, xprnSetPair
and Bioconductors ExpressionSet
class from the Biobase
package.
#check results with: class(z);exprs(z);pData(z);fData(z);annotation(z)
nf <- 5; nobs <- 4
x<- matrix(rnorm(nf * nobs), nrow = nf, ncol = nobs)
z1 <- xprnSet(exprs = x)
z2 <- xprnSet(exprs = x, phenoData = data.frame(class = c(1:ncol(x))))
z3 <- XprnSet(exprs = abs(x), annotation = "XprnSet")
z4 <- nxprnSet(x = x)
z5 <- nxprnSet(x = x, pdata = data.frame(class = c(1:ncol(x))))
z6 <- nxprnSet(x = x, pdata = c(rep("A", nobs - 1), rep("B", 1)))
z7 <- nXprnSet(x = abs(x), annot = "XprnSet")
Run the code above in your browser using DataLab