zScores(esets, classes, useREM=TRUE, CombineExp=1:length(esets))
zScorePermuted(esets, classes, useREM=TRUE, CombineExp=1:length(esets))
zScoreFDR(esets, classes, useREM=TRUE, nperm=1000, CombineExp=1:length(esets))
multExpFDR(theScores, thePermScores, type="pos")
list
of ExpressionSet
s, one expression set per experiment.
All experiments must have the same variables(genes).list
of class memberships, one per experiment. Each
list
can only contain 2 levels.logical
value indicating whether or not to use a REM, TRUE
,
or a FEM, FALSE
, for combining the z scores.vector
of scores (e.g. t-statistics or z scores)vector
of permuted scores (e.g. t-statistics or z scores)vector
of integer- which experiments should be combined-default:all experimentsmatrix
with one row for each probe(set) and the
following columns:
Effect_Ex_
, divided by the estimated standard deviation,
the square root of the EffectVar_Ex_
column.MUvals
.MUvals
divided by their standard
deviations, MUsds
.df
degrees of freedom) has a higher value than the value from
the Q statistic.zScores
implements the approach of Choi et
al. for for a set of ExpressionSet
s. The function zScorePermuted
applies
zScore
to a single permutation of the class labels.
The function zScoreFDR
computes a FDR for each gene, both for each
single experiment and for the combined experiment. The
FDR is calculated as described in Choi et al. Up to now ties in the
zscores are not taken into account in the calculation. The function might produce
incorrect results in that case. The function also
computes zScores, both for the combines experiment and for each single
experiment.
data(Nevins)
##Splitting
thestatus <- Nevins$ER.status
group1 <- which(thestatus=="pos")
group2 <- which(thestatus=="neg")
rrr <- c(sample(group1, floor(length(group1)/2)),
sample(group2,ceiling(length(group2)/2)))
Split1 <- Nevins[,rrr]
Split2 <- Nevins[,-rrr]
#obtain classes
Split1.ER <- as.numeric(Split1$ER.status) - 1
Split2.ER <-as.numeric(Split2$ER.status) - 1
esets <- list(Split1,Split2)
classes <- list(Split1.ER,Split2.ER)
theScores <- zScores(esets,classes,useREM=FALSE)
theScores[1:2,]
Run the code above in your browser using DataLab