
zinegbinomial(lphi="logit", lmunb = "loge", lk = "loge",
ephi=list(), emunb =list(), ek = list(),
iphi = NULL, ik = NULL, zero = -3, method.init=1,
shrinkage.init=0.95, nsimEIM=200)
negbinomial
for details,
and Links
for more choices.earg
in Links
for general information.1
or 2
or 3
which
specifies the initialization method for the mean parameter.
If failure to converge occurs try another value
and/or else specify a value for shrinkage.init
.
CommonVGAMffArguments
for more information."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.method.init
,
shrinkage.init
,
iphi
,
ik
, and/or
zero
if there are explanatory variables.negbinomial
, another Independent multivariate responses are handled.
If so then arguments iphi
and ik
may be vectors with
length equal to the number of responses.
Zinb
,
negbinomial
,
rpois
.x = runif(n <- 1000)
phi = logit(-0.5+1*x, inverse=TRUE)
munb = exp(3+x)
k = exp(0+2*x)
y1 = rzinb(n, phi, mu=munb, size=k)
y2 = rzinb(n, phi, mu=munb, size=k)
table(y1)["0"] / sum(table(y1))
table(y2)["0"] / sum(table(y2))
fit = vglm(cbind(y1,y2) ~ x, zinegbinomial(zero=NULL), trace=TRUE)
coef(fit, matrix=TRUE)
summary(fit)
cbind(fitted(fit), (1-phi) * munb)[1:5,]
vcov(fit)
Run the code above in your browser using DataLab