Learn R Programming

ACDm (version 1.0.4.3)

BurrDist: The Burr Distribution

Description

Density, distribution function, quantile function, random generation and calculation of the expected value for the Burr distribution with parameters theta, kappa and sig2.

Usage

dburr(x, theta = 1, kappa = 1.2, sig2 = 0.3, forceExpectation = F)
pburr(x, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
qburr(p, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
rburr(n = 1, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
burrExpectation(theta = 1, kappa = 1.2, sig2 = .3)

Value

dburr gives the density (PDF), qburr the quantile function (inverted CDF), rburr generates random deviates, and burrExpectation returns the expected value of the distribution, given the parameters.

Arguments

x

vector of quantiles.

p

vector of probabilities.

n

number of observations..

theta, kappa, sig2

parameters, see 'Details'.

forceExpectation

logical; if TRUE, the expectation of the distribution is forced to be 1 by letting theta be a function of the other parameters.

Author

Markus Belfrage

Details

The PDF for the Burr distribution is (as in e.g. Grammig and Maurer, 2000): $$f(x)=\frac{\theta \kappa x^{\kappa - 1}}{(1 + \sigma^2 x^{\kappa)^{\frac{1}{\sigma^2}+1}}}$$

References

Grammig, J., and Maurer, K.-O. (2000) Non-monotonic hazard functions and the autoregressive conditional duration model. Econometrics Journal 3: 16-38.