Density (PDF), distribution function (CDF), quantile function (inverted CDF), random generation and hazard function for the generelized Gamma distribution with parameters gamma, kappa and lambda.
dgengamma(x, gamma = 0.3, kappa = 1.2, lambda = 0.3, forceExpectation = F)
pgengamma(x, gamma = .3, kappa = 3, lambda = .3, forceExpectation = F)
qgengamma(p, gamma = .3, kappa = 3, lambda = .3, forceExpectation = F)
rgengamma(n = 1, gamma = .3, kappa = 3, lambda = .3, forceExpectation = F)
gengammaHazard(x, gamma = .3, kappa = 3, lambda = .3, forceExpectation = F)
dgengamma
gives the density (PDF), pgengamma
gives the distribution function (CDF), qgengamma
gives the quantile function (inverted CDF), rgenGamma
generates random deviates, and genGammaHazard
gives the hazard function.
vector of quantiles.
vector of probabilities.
number of observations..
parameters, see 'Details'.
logical; if TRUE
, the expectation of the distribution is forced to be 1 by letting theta
be a function of the other parameters.
Markus Belfrage
The PDF for the generelized Gamma distribution is:
$$f(x)=\frac{\gamma x^{\kappa \gamma - 1}}{\lambda^{\kappa \gamma}\Gamma (\kappa)}\exp \left\{{-\left(\frac{x}{\lambda}\right)^{\gamma}}\right\}$$