Learn R Programming

ACDm (version 1.0.4.3)

testRmACD: LM test of no Remaining ACD (Meitz and Terasvirta, 2006)

Description

Tests if there is any remaining ACD structure in the residuals

Usage

testRmACD(fitModel, pStar = 2, robust = TRUE)

Value

a list containing:

chi2

the value of the LM statistic.

pv

the pvalue of the test statistic.

Arguments

fitModel

a fitted ACD model, i.e. an object of class "acdFit".

pStar

the number of alpha parameters in the alternative hypothesis. See \(p*\) under 'Details'.

robust

if TRUE the LM statistic will be calculated using the "robust" version, making its asymptotic behavior unaffected by possible misspecification of the error term distribution (Meitz and Terasvirta, 2006).

Author

Markus Belfrage

Details

For the model $$x_i = \mu_i \phi_i \epsilon_i,$$ $$\mu_i = \omega + \sum_{j=1}^{p} \alpha_j x_{i-j} + \sum_{j=1}^{q} \beta_j \mu_{i-j},$$ $$\phi_i = 1 + \sum_{j=1}^{p*} \frac{x_{i-j}}{\mu_{i-j}},$$

the function tests the null hypothesis

$$H_0: \phi_i = 1.$$

References

Meitz, M. and Terasvirta, T. (2006). Evaluating models of autoregressive conditional duration. Journal of Business and Economic Statistics 24: 104-124.

See Also

testTVACD, testSTACD.

Examples

Run this code
fitModel3000obs <- acdFit(adjDurData[1:3000,])
testRmACD(fitModel3000obs, pStar = 2, robust = TRUE)

Run the code above in your browser using DataLab