Learn R Programming

ADAPTS (version 0.9.21)

missForest.par: Use parallel missForest to impute missing values. This wrapper is required because missForest crashed if you have more cores than variables. This will default to no parellelization for Windows

Description

newMatrix <- missForest.par(dataMat)

Usage

missForest.par(dataMat, parallelize = "variables")

Arguments

dataMat

Columns are features, Rows examples. The data with NA values. 'xmis' in missForest

parallelize

split on 'forests' or 'variables' (DEFAULT: 'variables')

Value

a matrix including imputed values

Examples

Run this code
# NOT RUN {
library(ADAPTS)
LM22 <- ADAPTS::LM22
LM22[2,3] <- as.numeric(NA) #Make some missing data to impute
LM22.imp <- missForest.par(LM22)
# }

Run the code above in your browser using DataLab