Learn R Programming

ADAPTS (version 1.0.22)

missForest.par: Use parallel missForest to impute missing values.

Description

This wrapper is helpful because missForest crashes if you have more cores than variables. This will default to no parellelization for Windows

newMatrix <- missForest.par(dataMat)

Usage

missForest.par(dataMat, parallelize = "variables")

Value

a matrix including imputed values

Arguments

dataMat

Columns are features, Rows examples. The data with NA values. 'xmis' in missForest

parallelize

split on 'forests' or 'variables' (DEFAULT: 'variables')

Examples

Run this code
library(ADAPTS)
LM22 <- ADAPTS::LM22
LM22[2,3] <- as.numeric(NA) #Make some missing data to impute
LM22.imp <- missForest.par(LM22)

Run the code above in your browser using DataLab