fitaep: Estimating the parameters of AEP distribution through the expectation-maximization (EM) algorithm
Description
Estimates the parameters of AEP distribution.
Usage
fitaep(x, initial = FALSE, starts)
Value
A list of objects in two parts as
The EM estimator for the parameters of AEP distribution.
A sequence of goodness-of-fit measures consist of Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling (AD), Cram\'eer-von Misses (CVM), Kolmogorov-Smirnov (KS), and log-likelihood (log-likelihood) statistics.
Arguments
x
Vector of observations.
initial
By default is FALSE. If the initial values are given by user, then set initial=TRUE.
starts
If initial values starts=\(\bigl(\alpha^{(0)}, \sigma^{(0)}, \mu^{(0)}, \epsilon^{(0)} \bigr)\), are given by user, i.e., initial=TURE, then vector starts must contain the initial values of the parameter vector, i.e., for starting the EM algorithm.
Author
Mahdi Teimouri
References
A. P. Dempster, N. M. Laird, and D. B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B, 39, 1-38.