Learn R Programming

AEP (version 0.1.4)

regaep: Robust linear regression analysis when error term follows AEP distribution

Description

Estimates parameters of the multiple linear regression model through EM algorithm when error term follows AEP distribution. The regression model is given by $$y_{i}=\beta_{0}+\beta_{1} x_{i1}+\cdots+ \beta_{k} x_{ik}+\nu_{i},~ i=1,\cdots,n,$$ where \({\boldsymbol{\beta}}=\bigl(\beta_{0},\beta_{1},\cdots,\beta_{k}\bigr)^{T}\) are the regression coefficients and \(\nu_i\) is the error term follows a zero-location AEP distibution.

Usage

regaep(y, x)

Value

A list of estimated regression coefficients, summary of residuals, F statistic, R-square (\(R^2\)), adjusted R-square, and inverted observed Fisher information matrix.

Arguments

y

Vector of response observations of length \(n\).

x

An \(n\times k\) array of covariate(s).

Author

Mahdi Teimouri

References

A. P. Dempster, N. M. Laird, and D. B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B, 39, 1-38.

Examples

Run this code
x <- seq(-5, 5, 0.1)
y <- 2 + 2*x + raep( length(x), alpha = 1, sigma = 0.5, mu = 0, epsilon = 0.5)
regaep(y, x)

Run the code above in your browser using DataLab