regaep: Robust linear regression analysis when error term follows AEP distribution
Description
Estimates parameters of the multiple linear regression model through EM algorithm when error term follows AEP distribution. The regression model is given by
$$y_{i}=\beta_{0}+\beta_{1} x_{i1}+\cdots+ \beta_{k} x_{ik}+\nu_{i},~ i=1,\cdots,n,$$
where \({\boldsymbol{\beta}}=\bigl(\beta_{0},\beta_{1},\cdots,\beta_{k}\bigr)^{T}\) are the
regression coefficients and \(\nu_i\) is the error term follows a zero-location AEP distibution.
Usage
regaep(y, x)
Value
A list of estimated regression coefficients, summary of residuals, F statistic, R-square (\(R^2\)), adjusted R-square, and inverted observed Fisher information matrix.
Arguments
y
Vector of response observations of length \(n\).
x
An \(n\times k\) array of covariate(s).
Author
Mahdi Teimouri
References
A. P. Dempster, N. M. Laird, and D. B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B, 39, 1-38.