Learn R Programming

AHMbook (version 0.2.2)

AHMbook-package: Functions and data for the Book “Applied Hierarchical Modeling in Ecology” Volumes 1 and 2

Description

Provides functions and data sets needed to replicate the analyses shown in the two-volume publication, Applied Hierarchical Modeling in Ecology: analysis of distribution, abundance and species richness in R and BUGS by Marc K<U+00E9>ry and Andy Royle, Academic Press (Vol 1, 2016; Vol 2, 2021).

Arguments

AHM1 - Chapter 1

sim.fn

Simulate a homogeneous Poisson point process and illustrate the fundamental relationships between intensity, abundance and occurrence (AHM1 - section 1.1)

AHM1 - Chapter 4

data.fn

Simulate count data that are replicated in space and in time according to the binomial N-mixture model of Royle (2004) (this is for much simpler cases than is possible with function simNmix in Chapter 6 below) (AHM1 - 4.3)

AHM1 - Chapter 6

ppc.plot

Plot results from posterior predictive checks in section AHM1 - 6.8, for a fitted binomial N-mixture model object with JAGS

simNmix

Simulate count data and individual detection histories for binomial and multinomial mixture models respectively under a wide range of conditions (AHM1 - 6.9.3)

plot_Nmix_resi

Do diagnostic plots for one binomial N-mixture model fitted with all three mixture distributions currently available in unmarked: Poisson, negative binomial and zero-inflated Poisson (AHM1 - 6.9.3)

map.Nmix.resi

Produce a map of the residuals from a binomial N-mixture model (see Section AHM1 - 6.9.3)

simpleNmix

Simulate count data under a very simple version of the binomial mixture model, with time for space substitution (AHM1 - 6.12)

playRN

Play Royle-Nichols (RN) model: generate count data under the binomial N-mixture model of Royle (2004), then 'degrade' the data to detection/nondetection and fit the RN model using unmarked and estimate site-specific abundance (AHM1 - 6.13.1)

AHM1 - Chapter 7

instRemPiFun, crPiFun, crPiFun.Mb, MhPiFun

Define the relationship between the multinomial cell probabilities and the underlying detection probability parameters (i.e., a pi function) in various designs (AHM1 - 7.8 and AHM2 - Chapter 2)

AHM1 - Chapter 8

sim.ldata

Simulate data under a non-hierarchical line transect distance sampling model (AHM1 - 8.2.3)

sim.pdata

Simulate data under a non-hierarchical point transect (= point count) distance sampling model (AHM1 - 8.2.5.1)

simHDS

Simulate data under a hierarchical distance sampling protocol (line or point) (AHM1 - 8.5.1)

AHM1 - Chapter 9

simHDSg

Simulate data under a hierarchical distance sampling (HDS) protocol with groups (AHM1 - 9.2.1)

simHDStr

Simulate data under a time-removal/distance sampling design (AHM1 - 9.3.2)

simHDSopen

Simulate open hierarchical distance sampling data (AHM1 - 9.5.4)

issj.sim

Simulate data under the open distance sampling protocol for the Island Scrub Jays (AHM1 - 9.7.1)

sim.spatialDS

Simulate data under a basic spatial distance sampling model (AHM1 - 9.8.3)

sim.spatialHDS

Simulate data under a spatial hierarchical distance sampling model (AHM1 - 9.8.5)

AHM1 - Chapter 10

simOcc

Simulate detection/nondetection data under static occupancy models under a wide range of conditions (AHM1 - 10.5)

sim3Occ

Simulate detection/nondetection data under a static 3-level occupancy model (AHM1 - 10.10)

simOccttd

Simulate 'timing data' under a static time-to-detection occupancy design (AHM1 - 10.12.1)

wigglyOcc

Simulate detection/nondetection data under a static occupancy model with really wiggly covariate relationships in occupancy and detection probability (AHM1 - 10.14)

spline.prep

Prepare input for BUGS model when fitting a spline for a covariate (AHM1 - 10.14)

AHM1 - Chapter 11

simComm

Simulate detection/nondetection or count data under a community occupancy or abundance model respectively (AHM1 - 11.2)

AHM2 - Chapter 1

simNpC

Simulate data on abundance (N), detection probability (p) and resulting counts (C) under a counting process with imperfect detection (AHM2 - 1.2)

simPOP

Simulate count data under a demographic state-space, or Dail-Madsen, model (no robust design) (AHM2 - 1.7.1)

simPH

Simulate count data with phenological curves within a year (AHM2 - 1.8.1)

graphSSM

Plot trajectories of counts and latent abundance from a fitted Gaussian state-space model (AHM2 - 1.6.1)

AHM2 - Chapter 2

simDM0

Simulate count data from a Dail-Madsen model under a robust design, no covariates (AHM2 - 2.5.1)

simDM

Simulate count data from a Dail-Madsen model under a robust design, with covariates (AHM2 - 2.5.5)

simMultMix

Simulate “removal” count data from a multinomial-mixture model (AHM2 - 2.7.1)

simFrogDisease

Simulate detection data for diseased frogs (AHM2 - 2.9.1)

AHM2 - Chapter 3

simCJS

Simulate individual capture history data under a Cormack-Jolly-Seber (CJS) survival model (AHM2 - 3.2.2)

ch2marray

Convert capture history data to the m-array aggregation (AHM2 - 3.4.1)

AHM2 - Chapter 4

simDynocc

Simulate detection/nondetection data under a dynamic occupancy model under a wide range of conditions (AHM2 - 4.4)

simDemoDynocc

Simulate detection/nondetection data under a demographic dynamic occupancy model (AHM2 - 4.12)

AHM2 - Chapter 5

simDCM

Simulate detection/nondetection data under a general dynamic community model (site-occupancy variant) (AHM2 - 5.2)

AHM2 - Chapter 7

valid_data

Partial validation of simulated data with false positives (AHM2 - 7.6.2)

modSelFP

A stop-gap function for modSel for fitted false positive occupancy models (AHM2 - 7.2.2)

AHM2 - Chapter 8

getLVcorrMat

Compute the correlation matrix from an analysis of a latent variable occupancy or binomial N-mixture model (AHM2 - 8.4.2)

AHM2 - Chapter 9

simDynoccSpatial

Simulate detection/nondetection data under a dynamic occupancy model with spatial covariate and spatial autocorrelation (AHM2 - 9.6.1.1)

simExpCorrRF

Simulate data from a Gaussian random field with negative exponential correlation function (AHM2 - 9.2)

simOccSpatial

Simulate detection/nondetection data under a spatial, static occupancy model for a real landscape in the Bernese Oberland (Swiss Alps) (AHM2 - 9.2)

simNmixSpatial

Simulate counts under a spatial, static binomial N-mixture model for a real landscape in the Bernese Oberland (Swiss Alps) (AHM2 - 9.2)

AHM2 - Chapter 10

simPPe

Simulate a spatial point pattern in a heterogeneous landscape and show aggregation to abundance and occurrence ('e' for educational version) (AHM2 - 10.2)

simDataDK

Simulate data for an integrated species distribution model (SDM) of Dorazio-Koshkina (AHM2 - 10.6.1)

AHM2 - Chapter 11

simSpatialDSline

Simulate line transect distance sampling data with spatial variation in density (AHM2 - 11.5)

simSpatialDSte

Simulate data for replicate line transect distance sampling surveys with spatial variation in density and temporary emigration (AHM2 - 11.8.1)

simDSM

Simulate line transect data for density surface modeling (AHM2 - 11.10.1)

DATA SETS

BerneseOberland

Landscape data for the Bernese Oberland around Interlaken, Switzerland (AHM2 - 9.2)

crestedTit

Crested Tit data from the Swiss Breeding Bird Survey MHB (Monitoring H<U+00E4>ufige Brutv<U+00F6>gel) for 1999 to 2015 (AHM2 - 1.3)

cswa

Chestnut-sided Warbler data for point counts and spot-mapping from White Mountain National Forest (AHM2 - 2.4.3)

crossbillAHM

Crossbill data from the Swiss Breeding Bird Survey for 2001 to 2012 (AHM2 - 4.9)

dragonflies

Toy data set used in AHM1 - 3.1

duskySalamanders

Counts of juvenile vs adult salamanders over 7 years (AHM2 - 2.9.2)

EurasianLynx

Data for Eurasian Lynx in Italy and Switzerland (AHM2 - 7.3.2)

Finnmark

Data from surveys of birds in Finnmark in NE Norway (AHM2 - 5.7)

FrenchPeregrines

Detection data for peregrines in the French Jura (AHM2 - 4.11)

greenWoodpecker

Count data for Green Woodpeckers in Switzerland from the MHB (AHM2 - 2.2)

HubbardBrook

Point count data for warblers from Hubbard Brook, New Hampshire (AHM2 - 8.2)

jay

The European Jay data set (from the MHB) is now included in unmarked (AHM1 - 7.9)

MesoCarnivores

Camera trap data for 3 species of meso-carnivores (AHM2 - 8.2)

MHB2014

Complete data from the Swiss Breeding Bird Survey MHB (Monitoring H<U+00E4>ufige Brutv<U+00F6>gel) for the year 2014 (AHM1 - 11.3)

spottedWoodpecker

Data for Middle Spotted Woodpeckers in Switzerland (AHM2 - 4.11.2)

SwissAtlasHa

A 1ha-scale subset of the count data from the Swiss Breeding Bird Atlas (AHM2 - 8.4.2)

SwissEagleOwls

Territory-level, multi-state detection/nondetection data for Eagle Owls in Switzerland (AHM2 - 6.4)

SwissMarbledWhite

Data from the Biodiversity Monitoring Program (LANAG) in the Swiss Canton of Aargau for Marbled White butterfly (AHM2 - 1.8.2)

SwissSquirrels

Count data for Red Squirrels in Switzerland from the Swiss breeding bird survey MHB (AHM1 - 10.9)

SwissTits

Data for 6 species of tits in Switzerland from from the Swiss breeding bird survey MHB during 2004 to 2013 (AHM1 - 6.13.1)

treeSparrow

Data for Tree Sparrows in Alaska (AHM2 - 11.8.4)

ttdPeregrine

Time-to-detection data for Peregrines (AHM1 - 10.12.2)

UKmarbledWhite

Data from the UK Butterfly Monitoring Scheme (UKBMS) for Marbled White butterfly (AHM2 - 1.8.2)

wagtail

Distance sampling data for Yellow Wagtails in The Netherlands (AHM1 - 9.5.3)

waterVoles

Detection/nondetection data for the Mighty Water Vole of Scotland (AHM2 - 7.2.2)

wigglyLine

Coordinates for a wiggly transect line (AHM2 - 11.9)

willowWarbler

Capture-history (survival) data for Willow Warblers in Britain (AHM2 - 3.4.1)

UTILITY FUNCTIONS

zinit

Generate starting values for fitting survival models (introduced in AHM2 - 3.2.3).

standardize

Standardize covariates to mean 0, SD 1.

fitstats, fitstats2

Calculate fit-statistics used in parboot GOF tests throughout the book (eg, Sections AHM1 - 7.5.4, AHM1 - 7.9.3, AHM2 - 2.3.3)

e2dist

Compute a matrix of Euclidean distances

image_scale

Draw scale for image (introduced in chapter AHM1 - 9.8.3)

bigCrossCorr

Report cross-correlations above a given threshold

Color_Ramps

Color ramps for use with image or raster plots

Details

The functions are listed by chapter below, where AHM1 refers to volume 1 and AHM2 to volume 2.